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Abstract
We explore the high dimensional geometry of sliding windows of periodic videos. Under a reas-
onable model for periodic videos, we show that the sliding window is necessary to disambiguate
all states within a period, and we show that a video embedding with a sliding window of an
appropriate dimension lies on a topological loop along a hypertorus. This hypertorus has an in-
dependent ellipse for each harmonic of the motion. Natural motions with sharp transitions from
foreground to background have many harmonics and are hence in higher dimensions, so linear
subspace projections such as PCA do not accurately summarize the geometry of these videos.
Noting this, we invoke tools from topological data analysis and cohomology to parameterize mo-
tions in high dimensions with circular coordinates after the embeddings. We show applications
to videos in which there is obvious periodic motion and to videos in which the motion is hidden.
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1 Video Dynamics And Subspace Geometry

1.1 Video Delay Embeddings
We use a sliding window through time, also known as a “delay embedding” in the dynamical
systems literature [3], to capture the dynamics of a periodic video. More precisely,

I Definition 1. Given a discrete video X[n] ∈ RW×H , where W ×H are the dimensions of
each frame in pixels and n ∈ Z+ is a discrete time index, the video is periodic if there exists
a T ∈ Z+ so that X[n] = X[n+ T ] for all n.

I Definition 2. Given a video X[n] ∈ RW×H and a window size M , delay embedding Y [n]
is formed as

Y [n] =


X[n]

X[n+ 1]
...

X[n+ (M − 1)]

 ∈ RW×H×M (1)

As n varies, Y [n] traces out a samples of a 1-manifold in RW×H×M , though for a video of
F frames, it lies on a F − 1 dimensional subspace, which we exploit to speed up processing.
Figure 1 shows a pictorial depiction of this scheme.
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Figure 1 A depiction of a discrete
delay embedding of a video of a woman
doing jumping jacks with a sliding win-
dow embedding of length M

Figure 2 XT slices of the principal components
of a sliding window of length 34 on the jumping
jacks videos. The green line on the left image shows
the X slice that is represented in the plots. Each
row corresponds to the two axes of an independent
ellipse in the delay embedding

1.2 Hypertorus Video Model

We now characterize the high dimensional geometry of sliding window embeddings of periodic
videos, following a similar analysis to recent on delay embeddings of 1D time series [4] (which
we also summarize in our narrated video). We start by assuming very general model for
periodic videos. For a period T and for constants A and φ, and for an arbitrary function gi
at each pixel Xi, define the grayscale level at pixel Xi as

Xi[n] = gi

(
A cos

(
2π
T
n+ φ

))
(2)

That is, each pixel is an arbitrary function composed with a scale of the same cosine.
Though the function at each pixel may differ, the functions across all pixels are globally
in phase. This means that the model has mirror symmetry built in. In particular Xi[n] =
Xi

[
T −

(
n+ φTπ

)]
. That is, each pixel repeats itself during the second half of its period, but

in reverse, making it impossible to disambiguate “going there” from “coming back.” On the
other hand, a sliding window size of appropriate length can turn this path into a topological
loop by taking a different trajectory in the embedding space during the second half of the
period. A similar observation was made in early work on video textures [5]. To see this
mathematically, express each pixel as a discrete cosine transform with T terms, which is
sufficient to summarize it over its period. Storing all T terms for all N pixels in a period in
the N × T matrix D, all pixels can be combined into a column vector of the following form:

X[n] =
T−1∑
k=0

cos
(

2π
T
kn

)
Dk (3)

where Dk is the kth column of the matrix of DCT coefficients. A sliding window of length
M then takes the following form:

Y [n] =
T−1∑
k=0


Dk cos

( 2π
T kn

)
Dk cos

( 2π
T k(n+ 1)

)
...

Dk cos
( 2π
T k(n+M − 1)

)
 (4)
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Sliding Window 3D PCA: 13.6% Variance Explained
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Figure 3 Sliding window embedding of a woman doing jumping jacks

Sliding Window 3D PCA: 27.9% Variance Explained
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Figure 4 Sliding window embedding of a heartbeat animation

using the cosine sum identity, this can be rewritten as

Y [n] =
T−1∑
k=0

cos
(2π
T
kn
)

Dk

Dk cos
(

2πk
T

)
...

Dk cos
(
(M − 1) 2πk

T

)
+ sin

(2π
T
kn
)

0N

Dk sin
(

2πk
T

)
...

Dk sin
(
(M − 1) 2πk

T

)
 (5)

Hence, the path that is traced out by varying n is the sum of d ≤ T/2 independent ellipses, each
spanned by a plane. Such paths live on a topological d-torus, corresponding to 2d nonzero columns
in D, with 2 dimensions for each independent ellipse.

Let us now empirically examine the embedding space of these motions. Let A be a matrix
containing all sliding windows, with the jth column of A containing Y [j], and take the k eigenvectors
of the matrix AAT with the largest eigenvalues, sorted in descending order by eigenvalue. These
are known as the first k principal components of the sliding window point cloud, and they capture
the maximum variance in the data over all possible k dimensional subspaces in the embedding
space. Note that vector in the embedding space in sliding window videos is itself a video with M
frames. Figure 2 shows the first 8 principal component vectors in a real video, pulling out a line of
pixels along the x-axis in each principal component and plotting its evolution over the M frames.
Consistently with the vector part of Equation 5, lower frequency ellipse axes correspond to smooth
sinusoidal motions, while higher axes correspond to higher harmonics.

2 Persistent Homology And Circular Coordinates
Since sliding window embeddings of videos lie on a highly curved topological loop on a hypertorus,
high dimensional data analysis tools are necessary. We invoke 1D persistent homology to measure
the geometric prominence of the loops [2]. Briefly, homology is an algebraic framework for describing
equivalence classes of loops in a fixed space, where equivalence is defined up to a boundary in that
space (loops in the same class can be stretched into each other along the space without gluing or
tearing). 1D Persistent homology is an adaptation of the theory to point cloud data in which a
sequence of simplicial complexes are constructed on top of the point cloud, and classes of loops are
tracked as edges and triangle are added to the complex. In a Rips filtration, edges are added between
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Video Frame 3D PCA: 1.5% Variance Explained
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Figure 5 Sliding window embedding of a video of a person sitting still, which has hidden periodic
motion due to the person’s heartbeat

points in ascending order of distance, and a triangle between three points is added the moment all
three edges have been added. The “birth time” of a class is the distance in the Rips filtration at
which the loop class first appears, and the “death time” is the distance at which it “fills in” (i.e. is
expressible as a boundary of triangles). In this way, persistent homology is a mix of topological and
metric information about the loop, as loops which are born earlier are more finely sampled, and
loops which die later are rounder and/or geometrically larger. Birth/death pairs are plotted for all
classes in a “persistence diagram,” as shown in Figures 3, 4, 5. In all of these examples, there is one
clear loop which has a much higher “persistence” (death - birth) than all other loops, and this loop
corresponds to the periodic motion encoded geometrically with the sliding windows. We also use a
related theory of 1D persistent cohomology to find maps of a point cloud to the circle for a loop
class, thereby parameterizing the motion of the video embeddings with circular coordinates [1].

Figure 3 shows an example of applying 1D Rips and persistent cohomology to extract circular
coordinates for the jumping jack example. The loop is visible after projecting the data onto its
first three principal components, but little of the variance is explained since this video has sharp
transitions from foreground to background, which need to be represented with many harmonics, as
shown in our video. Circular coordinates, on the other hand, are able to parameterize the motion in
high dimensions. A similar pattern is visible for a synthetic beating heart video in Figure 4. We can
also apply our techniques to videos with very subtle motions. Figure 5 shows such an example with
a person sitting still in front of a camera. Hardly any motion is visible, but the persistence diagram
and circular coordinates indicate the presence of a cycle. In fact, this cycle corresponds to twice
the person’s heartbeat, which exists as a low magnitude vibration in the video. To show that there
indeed is a periodic process going on, we use phase-based video motion amplification ([6]) to amplify
all motions within the frequency band consistent with the parameterization found.
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