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Overall Goals / Design Choices

B Leverage multiple, heterogeneous modalities in
identification

B Develop general tools without domain specific models
B Techniques are unsupervised (no training data required)
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OuluVS2 Digits Dataset

B 51 speakers
B 10 sequences, 3 instances per speaker per sequence
B Video from multiple points of view, audio

http://www.ee.oulu.fi/research/imag/OuluVS2/
index.html

Christopher Tralie, Paul Bendich, John Harer Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion

http://www.ee.oulu.fi/research/imag/OuluVS2/index.html
http://www.ee.oulu.fi/research/imag/OuluVS2/index.html


Why Digits?

B Modalities capture different aspects (“p” versus “b”)
B Variation across speakers and across runs

B Even after uniformly scaling, the raw audio signals do not
align perfectly in time
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Problems And Success Metrics

B Decompose set of digit strings various ways:
I by digit string, by speaker, by speaker and digit string

B Goal is to come up with similarity ranking mechanism µ s.t.
I For each object s, µ(s, t) is larger when t is in same

class as s

(Rusinkiewicz and Funkhouser 2009)
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Problems And Success Metrics

B Success Evaluated by precision-recall curves for each
object s

B Recall: Proportion of class items considered in an ordered
list by similarity

B Precision: The proportion of items that are actually correct
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Problems And Success Metrics

B Success Evaluated by precision-recall curves for each
object s

B Report average P-R curves
B Area under P-R curve is mean average precision (MAP)
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Other approches, our pipeline(s)

B Many approaches (including ours) construct µ via mapping
strings into a feature space

B Lots of deep learning approaches (Lopez and Sukno, 2018)

B HMM per class, use canonical correlation analysis to learn good
ways to extract fused audio/visual features (Sargin et al, 2007)

B We propose a set of entirely unsupervised pipelines

I Labeled examples used only to evaluate not to train

s

s

s

Christopher Tralie, Paul Bendich, John Harer Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion



Self-Similarity Matrices (SSMs)

Dij = ||Xi −Xj ||2
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Why SSMs?

Imran N Junejo et al. “View-independent action recognition from temporal
self-similarities”. In: IEEE transactions on pattern analysis and machine
intelligence 33.1 (2011), pp. 172–185
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SSMs on Our Data

Video:

B Extract lip region from each frame and rescale to 25× 25
grayscale

B Treat as time series in 25× 25 = 625 dim Euclidean space

Audio:

B Break audio signal into overlapping windows

B Summarize each window via 20 MFCC coefficients

B Treat as time series in 20 dimensional Euclidean space
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Similarity Network Fusion (SNF)

B Transform several weight matrices W1, . . . ,Wm into one that
(hopefully) has best qualities of all

B Based on random walks with cross-talk between matrices for
probabilities (works best if modalities are complementary)

Bo Wang et al. “Unsupervised metric fusion by cross diffusion”. In: Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on. IEEE. 2012,
pp. 2997–3004
Bo Wang et al. “Similarity network fusion for aggregating data types on a genomic
scale”. In: Nature methods 11.3 (2014), p. 333
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SNF for Early Audio-Visual Fusion

B We use SNF to fuse MFCC (audio) and lip pixel (video) SSMs

a

b

c

(W )v

(W )v (W )F

(W )F

(W  )A

(W  )A

9 7 4 4 4 3 5 5 8 7
a: repeating 4s, b: repeating 5s, c: repeating 7s
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How To Compare (Fused) SSMs?

B Each string s transformed into SSM WA(s), Wv(s), then fused
into WF (s)

B How to compare WF (s) with WF (s
′)? Could just use `2 (Matrix

Frobenius Norm)

s

s

s
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Measuring Similarity between SSMs

B Each string s transformed into SSM WA(s), Wv(s), then fused
into WF (s)

B How to compare WF (s) with WF (s
′)? Could just use `2 (Matrix

Frobenius Norm)

B Local delays (time warps) induce local perturbations in SSMs

B `2 norm unstable to these perturbations
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The Scattering Transform

B Instead of `2, use the scattering transform on SSMs
I Has nice theoretical stability properties

Laurent Sifre and Stéphane Mallat. “Rotation, scaling and deformation invariant
scattering for texture discrimination”. In: Proceedings of the IEEE conference on
computer vision and pattern recognition. 2013, pp. 1233–1240
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The Scattering Transform: A Few Details

B Given an N ×N image I(u, v), choose lowpass filter φ(u, v)

B Level 0: S0(u, v) = I ∗ φ(u, v)
B There are d× d total coefficients: d = N/2J−1, J max scale
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The Scattering Transform: A Few Details

B Now choose a mother wavelet ψ(u, v), a set of L directions γi,
and a set of J scales j ∈ 0, 1, . . . , J − 1

B Level 1: S1
i,j(u, v) = |I ∗ 2−2jψγi(u/2j , v/2j)| ∗ φ(u, v)

Using complex Gabor wavelets: ψγ = eiγ·(u,v)e−(u
2+v2)/σ2
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The Scattering Transform: A Few Details

B Now choose a mother wavelet ψ(u, v), a set of L directions γi,
and a set of J scales j ∈ 0, 1, . . . , J − 1

B Level 1: S1
i,j(u, v) = |I ∗ 2−2jψγi(u/2j , v/2j)| ∗ φ(u, v)

There are d2LJ level 1 coefficients
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The Scattering Transform: A Few Details

B Level 2:

S2
i,j,k,l(u, v) = ||I∗2−2jψγi(u/2j , v/2j)|∗2−2lψγk(u/2l, v/2l)|∗φ(u, v)

(1)

B There are d2L2J(J − 1)/2 level 2 coefficients
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The Scattering Transform: A Few Details

B One can continue past level 2, but we stop there

B Repeated convolve-with-wavelet, take complex modulus, do
low-pass filter gives CNN-style architecture, but unsupervised.

B Each choice of wavelets in sequence is called a path
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Scattering Transform As Feature Extractor

B Resize each SSM to 256× 256 resolution

B Take L = 8 equally spaced directions between 0 and π

B Take J = 4 scales, so that each path is 32× 32

B Results in 322(1 + 4× 8 + 82 × 4× 3/2) = 427, 008 scattering
coefficients extracted from SSM (6.5x data size, but stable)
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Scattering Transform As Feature Extractor

B Example scattering SSM
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SNF for Late Audio-Visual Fusion

B Everything so far has happened upstream: before ranking
decisions are made

B Can also apply SNF downstream

B Given object-level metrics µ1, . . . , µk on set of N objects (strings)

B Each one produces object-level SSMs, which can themselves be
fused into a new SSM

B We apply that here with k = 3 (audio, visual, early fused)

s

s

s
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Results: Digit String Identification
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Results: Digit String Identification, Simulated Noise

∞ 12 10.5
PSNR (dB)

26 20 16.5 14
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Results: Speaker Identification, Simulated Noise

∞ 12 10.5
PSNR (dB)

26 20 16.5 14
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Results: Joint Speaker And String Identification,
Simulated Noise

∞ 12 10.5
PSNR (dB)

26 20 16.5 14
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