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Overall Goals / Design Choices

> Leverage multiple, heterogeneous modalities in
identification

> Develop general tools without domain specific models
> Techniques are unsupervised (no training data required)
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OuluVS2 Digits Dataset

> 51 speakers
> 10 sequences, 3 instances per speaker per sequence
> Video from multiple points of view, audio

http://www.ee.oulu.fi/research/imag/Ouluvs2/
index.html
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Why Digits?

> Modalities capture different aspects (“p” versus “b”)
o> Variation across speakers and across runs
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> Even after uniformly scaling, the raw audio signals do not
align perfectly in time

Christopher Tralie, Paul Bendich, John Harer Multi-scale Geometric Summaries for Similarity-based Upstream



Problems And Success Metrics

> Decompose set of digit strings various ways:
» by digit string, by speaker, by speaker and digit string
>> Goal is to come up with similarity ranking mechanism p s.t.
» For each object s, u(s,t) is larger when ¢ is in same
class as s
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(Rusinkiewicz and Funkhouser 2009)
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Problems And Success Metrics

>> Success Evaluated by precision-recall curves for each
object s

> Recall: Proportion of class items considered in an ordered
list by similarity

> Precision: The proportion of items that are actually correct
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Problems And Success Metrics

> Success Evaluated by precision-recall curves for each
object s

> Report average P-R curves

> Area under P-R curve is mean average precision (MAP)

Precision Recall Curves by Digit Sequence, No Noise
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Other approches, our pipeline(s)

> Many approaches (including ours) construct x via mapping
strings into a feature space

> Lots of deep learning approaches (Lopez and Sukno, 2018)

> HMM per class, use canonical correlation analysis to learn good
ways to extract fused audio/visual features (Sargin et al, 2007)

> We propose a set of entirely unsupervised pipelines
» Labeled examples used only to evaluate not to train
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Self-Similarity Matrices (SSMs)

Dij = || Xi — X2
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Why SSMs?
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Imran N Junejo et al. “View-independent action recognition from temporal
self-similarities”. In: IEEE transactions on pattern analysis and machine
intelligence 33.1 (2011), pp. 172-185
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SSMs on Our Data

Video:

> Extract lip region from each frame and rescale to 25 x 25
grayscale

> Treat as time series in 25 x 25 = 625 dim Euclidean space
Audio:

> Break audio signal into overlapping windows

> Summarize each window via 20 MFCC coefficients

> Treat as time series in 20 dimensional Euclidean space
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Similarity Network Fusion (SNF)

> Transform several weight matrices W1, ..., W,, into one that
(hopefully) has best qualities of all

> Based on random walks with cross-talk between matrices for
probabilities (works best if modalities are complementary)

Bo Wang et al. “Unsupervised metric fusion by cross diffusion”. In: Computer Vision
and Pattern Recognition (CVPR), 2012 IEEE Conference on. |IEEE. 2012,
pp. 29973004
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SNF ly Audio-Visual Fusion

> We use SNF to fuse MFCC (audio) and lip pixel (video) SSMs
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How To Compare (Fused) SSMs?

> Each string s transformed into SSM W4 (s), W, (s), then fused
into WF(S)

> How to compare Wg(s) with Wr(s')? Could just use ¢, (Matrix
Frobenius Norm)
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Measuring Similarity between SSMs

> Each string s transformed into SSM W4 (s), W, (s), then fused
into Wg(s)

> How to compare Wr(s) with Wr(s")? Could just use ¢5 (Matrix
Frobenius Norm)

> Local delays (time warps) induce local perturbations in SSMs
> {5 norm unstable to these perturbations
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The Scattering Transform

> Instead of /5, use the scattering transform on SSMs
» Has nice theoretical stability properties
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> Given an N x N image I(u,v), choose lowpass filter ¢(u,v)
> Level 0: SO(u,v) = I * ¢(u,v)
> There are d x d total coefficients: d = N/27~!, J max scale
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> Now choose a mother wavelet ¢(u, v), a set of L directions ~;,
andasetof Jscalesj€0,1,...,J—1

> Level 1: 5 ;(u,v) = [T %2729, (u/27,v/27)| * ¢(u,v)
Using complex Gabor wavelets: 1., = i1 (w:v) g=(u*+v*)/o?
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> Now choose a mother wavelet ¢(u, v), a set of L directions ~;,
andasetof Jscalesj€0,1,...,J—1

> Level 1: 5 ;(u,v) = [T %2729, (u/27,v/27)| * ¢(u,v)
There are d2LJ level 1 coefficients
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> Level 2:

S7 i wa(u,v) = |[1x27270p (u/27, v/29) %272, (u/2h, v/2Y) % (u, v)
(1)

> There are d?L%J(J — 1)/2 level 2 coefficients
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> One can continue past level 2, but we stop there

> Repeated convolve-with-wavelet, take complex modulus, do
low-pass filter gives CNN-style architecture, but unsupervised.

> Each choice of wavelets in sequence is called a path
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Scattering Transform As Feature Extractor

> Resize each SSM to 256 x 256 resolution
> Take L = 8 equally spaced directions between 0 and =
> Take J = 4 scales, so that each path is 32 x 32

> Results in 322(1 + 4 x 8 + 8% x 4 x 3/2) = 427,008 scattering
coefficients extracted from SSM (6.5x data size, but stable)
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Scattering Transform As Feature Extractor

> Example scattering SSM

SSM Level 0 Scattering SSM Level 2 Scattering

10 20
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SNF for Late Audio-Visual Fusion

> Everything so far has happened upstream: before ranking

decisions are made

\ARRY

Given object-level metrics puq, .. .

Can also apply SNF downstream

, bk on set of N objects (strings)

> Each one produces object-level SSMs, which can themselves be

fused into a new SSM

\Y

K (# Nearest Neighbors).

We apply that here with k£ = 3 (audio, visual, early fused)

v
i w,
Row Audo |—Audio_f  ssMComputation Wa lly) IW—A)
MFCCs ¥ > Ly )
Preprocessing Apply Similarity P Scattering
Raw Video Downsample Similarity wy | Network Fusion We Transform
—_ > Tip Pixe s4 Kernel > l

Christopher Tralie, Paul Bendich, John Harer

Multi-scale Geometric Summaries for Similarity-based Upstream



Results: Digit String Identification

Precision Recall Curves by Digit Sequence, No Noise
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Results: Digit String Identification, Simulated Noise

Varying Noise Mean Average Precision by Digit Sequence
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Results: Speaker ldentification, Simulated Noise

Varying Noise Mean Average Precision by Speaker
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Results: Joint Speaker And String Identification,

Simulated Noise

Varying Noise Mean Average Precision by Digit Sequence And Speaker
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