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ABSTRACT

In this work, we show that the sliding window embed-
dings of certain audio novelty functions (ANFs) represent-
ing songs with rhythmic subdivisions concentrate on the
boundary of non-orientable surfaces such as the Möbius
strip. This insight provides a radically different topolog-
ical approach to classifying types of rhythm hierarchies.
In particular, we use tools from topological data analysis
(TDA) to detect subdivisions, and we use thresholds de-
rived from TDA to build graphs at different scales. The
Laplacian eigenvectors of these graphs contain information
which can be used to estimate tempos of the subdivisions.
We show a proof of concept example on an audio snippet
from the MIREX tempo training dataset, and we hope in
future work to find a place for this in other MIR pipelines.

1. INTRODUCTION

Automatic rhythm understanding in audio is a long stand-
ing problem in MIR. Most techniques for rhythm analysis
start with an audio novelty functions (ANFs), which are
a downsampled version of the original audio signal meant
to correlate with rhythmic events, and which are usually
derived from spectrograms [2, 3, 9, 12]. Most approaches
to beat tracking and tempo analysis use dynamic program-
ming [9, 14], a Bayesian approach [6, 22], or some type
of autocorrelation [7, 16], Fourier [16, 18], or wavelet [21]
analysis. We take a completely orthogonal approach by
considering a geometric, dynamical systems perspective
on ANFs. The end result is a pipeline in which shape prop-
erties of sliding window embeddings ANFns can be used
to uncover ratios between different rhythm levels in audio.

2. SLIDING WINDOW EMBEDDINGS OF PULSES

Given M lags and an interval τ , the sliding window em-
bedding of a 1D function f(t) 1 is the space curve is pa-

1 For ease of exposition, we define the sliding window as acting on
continuous 1D functions, but in practice these functions are discretized to
N samples, and interpolation may be necessary for some M, τ choices.
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Figure 1. Self-similarity matrices (SSMs) of sliding win-
dow embeddings of various harmonic pulse trains.
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Figure 2. (Left) The Möbius strip (2 on 1) with its
boundary drawn in blue and arrows showing identifications
(glued locations). In this rendering, the boundary jumps
from the lower right corner to the upper right corner of
this diagram because of the twist. A uniform Möbius strip
has the property that for its boundary [0, 2π] → X(t),
||X(t)−X(t+π)||2 is a constant d (the width of the strip).
(Right) Analogous structure for the 3 on 1 geometry.

rameterized as

SM,τ [f ](t) =


f(t)

f(t+ τ)
...

f(t+Mτ)

 ∈ RM+1 (1)

Under the right conditions, sliding window embeddings
of time series which witness deterministic processes can
be used to reconstruct the state spaces of those processes
[13, 20]. It is for this reason that the authors in [19] ad-
vocated for sliding windows of Chroma vectors as a pre-
processing step to improve robustness. A simpler exam-
ple is that of a pure sinusoid, for which SM,τ [cos](t) =
u cos(t) + v sin(t) for two fixed vectors u,v ∈ RM+1

(see [17]), which is an equation parameterizing an el-
lipse. More generally, as shown by the authors of [17],
the sliding window embedding of any periodic function
(i.e. f(t) = f(t + T ) for some T ∈ R+) lies on a
topological loop, though the geometry may be quite com-
plicated. For instance, the sliding window embedding of
a cos(t) + b cos(2t) lies on the boundary of a Möbius strip
if b > a [17] (note that the boundary of a Möbius strip is a
single loop, see Figure 2). Inspired by this result, we inves-
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Figure 3. Sliding window of the 2 on 1 pulse train, T =
200, k = 2, a = b = 1, Mτ = 2T , and the first window is
highlighted in red on the left plot. The horizontal red line
indicates the distance between adjacent windows in time,
and the green line indicates the local min distance at T/2.
Persistence diagrams for fields Z2,Z3,Z5 are on the right.

Figure 4. Sliding window embedding of the audio novelty
function (ANF) from part of Erykah Badu’s “Green Eyes,”
which has a 3 on 1 structure, as indicated by the Z3 change.

tigate the sliding window embeddings of “k on 1 harmonic
pulse trains” as a model for ANFs with subdivision; that is

f(t) = aδ(t(modT )) + bδ(kt(modT )) (2)

for some constants a, b and some positive integer k,
where δ is the Kronecker delta. Given Mτ = 2T , we
observe that the pairwise distances between windows are

d(s, t) =


0 |s− t| = lT

2|b− a| |s− t| = l′T + T/k
∞ otherwise

 (3)

for l, l′ ∈ Z. That is, the windows line up perfectly after
an integer number of periods, but they also line up locally
at every subdivided beat shift. Otherwise, they don’t line
up at all, though in practice we smooth the pulses so adja-
cent windows in time have a finite distance. Figure 1 shows
SSMs for smoothed pulses for different cases. For k = 2,
this matches the geometry of the Möbius strip boundary,
which is locally close to itself at a lag of T/2 (Figure 2).

2.1 Discovering Subdivisions with TDA

To discover these shapes in data, we use techniques from
topological data analysis (TDA). In broad strokes 2 , TDA
provides a way to quantify “cycles” (connected compo-
nents, loops, voids) at different scales in point cloud data.
It uses a computable invariant known as homology, which
turns the problem of quantifying these features into a linear
algebra problem. For certain shapes with “torsion,” such
as the Möbius strip, the field of coefficients used in the
vector space representing the objects can change the ho-
mology [15]. In the case of the Möbius strip boundary, if
we use Z2 (binary) coefficients, a loop class is “born” (i.e.

2 This is an intricate subject, details are beyond our scope; see [4,8,10]

Figure 5. Different thresholds on the Möbius ladder graph.
Columns 1+2 show different layouts of the graph, column
3 shows the corresponding adjacency matrices, column 4
shows the first two nonzero eigenvectors v1 (blue) and v2
(green), and the last column shows tan−1(v2/v1).

forms for the first time) at a scale 3 r equal to the distance
between adjacent windows (red line, Figure 3) and “dies”
(i.e. fills in) at a scale slightly larger than the strip width
g (green line). These changes are summarized in a “per-
sistence diagram” which has a dot for every class, with its
birth time on the x-axis and death time on the y-axis. At a
scale equal to the strip width g, another class is born, which
dies at the maximum distance m. By contrast, for all other
field coefficients, there is only one significant class which
is born at r and dies at m (see [17] for a similar example
with pure sinusoids). In general, for finite fields with p el-
ements, where p is a prime factor of k, this “splitting” of
one class [r,m] into [r, g] and [g,m] will occur, which can
be used to identify subdivision. Figure 4 shows a real 3 on
1 example using the audio novelty function from [9].

2.2 Graph Laplacian Circular Coordinates

We now turn to spectral graph theory [5] to help uncover
tempos of the different subdivisions, taking inspiration
from [1]. Let A be the adjacency matrix of a graph, and
let D be the degree matrix 4 . Then L = D − A is the
unweighted graph Laplacian. We can build a graph on the
discrete set of windows. As hinted at in the SSMs (Fig-
ure 1), if we include edges with distances under the birth
times in the persistence diagrams r and g, then we always
end up with “circulant graphs,” or graphs in which A is
circulant [11], which have Laplacians diagonalized by the
Discrete Fourier Transform. For the sliding window of a
pulse train with period T and subdivision by factor k, if
we only include edges up to window neighbor threshold
r in the graph, we get a loop graph. The eigenvectors L
with the smallest two nonzero eigenvalues are orthogonal
linear combinations of cos(2πn/T ), sin(2πn/T ). In the
case that we include edges every k lags (threshold g), the
eigenvectors with the smallest two nonzero eigenvalues are
cos(2πkn/T ) and cos(2πkn/T ). The absolute slope of
θ[n] = tan−1( v2[n]v1[n]

) gives a tempo at each scale.

3 By scale x, we mean a “Rips complex” built from distance infor-
mation between windows. This is a combinatorial object with a vertex
for each window, edges between windows that are at most x apart, and
triangles between triples of windows which are pairwise at most x apart.

4 Aij = 1 if edge from i to j, or 0 otherwise. Dii =
∑N

j=1 Aij
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