*Introduction: Chris Tralie: Rising Junior at Princeton, Pratt Engineering REU Fellow, Adviser Matt Reynolds
*Project Aim: Create autonomous robot that can drive around an unknown environment and create a 2D map, driving at the center of a hallway (local navigation). Record strength of RFID tags at every point. Create a “heatmap” for every RFID tag seen. Eventually use map and RFID tag data for navigation.
*Application: Drive around an unknown hospital to collect info, then deliver supplies

*Need to program a robot easily, use PlayerStage
*Player allows for hardware abstraction, easily replace components stage allows for simulation by faking hardware devices, easily switch between real life/simulation
*Physical robot starts off with Irobot Create, a programmable version of the “Roomba” automatic vacuum robot with the vacuum removed

*Create has motors, bumper, and IR sensors

*Attach a Hokuyo URG-04LX laser to scan in 270 degree field of view proximity of every obstacle (actually only use 180 degrees)
*Onboard netbook with 9hr battery, gives enough processing power without sacrificing portability; use it to execute robot control programs and hook it up to all of the devices
*RFID reader and antenna attached to the robot to pick up RFID tags in the environment

*(Show 3 pictures of the fully-assembled platform, point out all of the labeled components on first slide)
*Once I have the platform fully assembled, I can collect data. Log laser, odometry, and RFID data through player (I created my own RFID driver for player; laser and odometry drivers already supported), record Unix epoch time that each reading was taken so that they can be synchronized.
*Then I use SLAM (Simultaneous Localization and Mapping) techniques to build a map, known as a “2D Occupancy Grid,” of an unknown area, using a utility called pmaptest. It would have taken too long to develop my own SLAM implementation, so this was the solution I came up with. Here is a picture of a part of CIEMAS near where I work, generated from the laser and odometry logged data. Sometimes the map needs to be touched up before use, so I created a filter to do that
*After the map is built, can play back the logfile of laser and odometry data and “localize” the recorded odometry positions, or update them according to the map, correcting mistakes in the odometry and making a more confident estimate as to where the robot actually was. This information is then outputted to a separate logfile
*Here is a video of the localization process taking place, synchronized with the frames of data read from the webcam on front of the robot

*With the localized data, the map (occupancy grid), and the RFID logs, I can now generate a visual for the RFID tags that were read, which shows how strong the tags are at each point on the map. This is known as a “heatmap.” Here is a video of a program I created in Java to interactively view the heatmaps of different tags. You can see the “centroid” (strongest point) of the tag marked with a red dot.
*Now that the system works, time to test it; created a program that can drive towards the center of the hallway by using the laser scans; here is a video of that program in action. Since the robot will always drive towards the center of the hallway and turn on its own, can set it free to take data and only override it when it makes a mistake (makes the process much easier)
*To test for success, I first placed 5 tags 4 feet apart in a straight section of hallway, and my program determined the average distance between them to be 3.77 feet with a 1.38 feet standard deviation
*I then placed 10 tags 20 feet apart down a longer section of hallway with a bend in it, and my program determined them to be 20.1 feet apart with a 3.69 feet standard deviation

*Creating maps of a loop, however, did not work as well. You can see errors from odometry drift. Those were supposed to be right angles where the hallway bent

*In spite of that, the ad-hoc RFID tag localization process works well, which was the main part of my work. We need a better SLAM client to do laser-corrected odometry to prevent drift, and to close the loops. I am currently exploring one such solution by Duke’s own Ronald Parr which seems to work very well. Global navigation with waypoints is also right around the corner, since Player appears to have path planning built into it already

*Do acknowledgements

*Are there any questions?
