
User’s Guide for TDATools Package

September 26, 2014

Abstract

words

1 Getting Started

System Requirements The TDATools package should work on all common
platforms, and has been tested on Windows, Mac, and several Linux variants.

Obviously, you will need MATLAB on your machine. The package has been
tested on Matlab 2013b and 2014a, with all toolboxes installed. Various com-
ponents use commands available only in certain toolboxes (for example, the
mapping toolbox is required for rca1mfscm). We provide no guarantee that all
tools will work on earlier versions of Matlab. We strongly recommend that you
use this package on a complete installation of Matlab, including all toolboxes.
If you encounter an error running one of the commands, and your script calls
are syntactically correct, please email Rann Bar-On (rann@math.duke.edu) for
help. We would be glad to let you know what toolbox may be missing so that
you may install it, and/or and possibly work with you to provide an alternative
method, with the caveat that the latter may decrease performance.

Although all of the commands in this package are written in MATLAB, quite
a few of them (LSD.m and everything with the prefix rca) require interaction
with the underlying Java code in bin/tda.jar. Facilitiating this on a particular
computer or operating system requires the availability of a Java virtual machine
(JVM). The code has been written to comply with Java 2, using the 1.6 or later
release of the Java SDK.

Installation There are two main methods for obtaining the TDATools pack-
age, either via downloading a zip of the latest stable version from the website
or by cloning the most recent version from our git repository.

Setting up MATLAB to run TDATools Follow these steps to get the
TDATools package running in your MATLAB session. Note that you must do
this each time you start a new MATLAB session, assuming you want to use the
TDATools package during that session.

1. Either run MATLAB in the TDA package directory, or make it the active
directory in an already-running MATLAB session. This directory contains
the init.m file.

1

2. At the MATLAB command prompt, execute the command

>> init

This will set up your environment.

3. Check that you now have a variable called TLDIR. This is a directory
path which ends in tda/.

That should be that, and you are now ready to start computing.

2 Computing Persistence Diagrams

The directory /src/MATLAB/topology contains all the .m files needed for com-
puting persistence diagrams in various ways. Here we go over each command in
turn, first by just explaining the syntax and then by directing you to compute
some examples. The most basic command, involving Rips filtration on point
clouds, is explained first, and we then move to more exotic variants. Note that
the input and output files that we refer to can be found in /examples/Testing.

2.1 Rips filtrations on point clouds.

Let X be a point cloud in Euclidean space. The command rca1pc computes the
persistence diagrams, in dimensions zero and one, for the Rips filtration built
off of X. Note that this command implements the Rips-Collapse algorithm
(see arxiv paper), which returns the exact diagrams in time far faster than the
standard Rips algorithm.

Specifically, the command

>> [I J] = rca1pc(X,distanceBoundOnEdges);

produces two diagrams. I is the 1-dim persistence diagram for the Rips filtration
on X, run up to Rips-threshold distanceBoundonEdges, and J is the 0-dim
diagram for the same filtration. The diagrams are returned as M × 2 arrays,
where M is the number of dots in the diagram, and the two columns store
birth and death values. The input point cloud X must come as a N × D
array, where N = |X|, and D is dimension of the Euclidean space. The input
distanceBoundOnEdges is just a real number.

Simple example. To test out this command, type

>> X = load(’/examples/Testing/Diamond.txt’);

at the command line. If you plot X, you will see that is just a set of four points
taken from the corners of a diamond in the plane. Now we compute

>> [I J] = rca1pc(X,3);

and compare I and J to the output stored in /examples/Testing/Diamondonediagram.txt
and /examples/Testing/Diamondzerodiagram.txt, respectively. Assuming all
has gone well, I should store one one-cycle, and J should store four compo-
nents, with one being immortal and the other three all dying at the same time.

Now try running rca1pc again on this point cloud, but with a distance bound
of 1.5. Does your output make sense?

2

Larger example. Now we compute the persistent homology of a large number
of points sampled from a swiss roll. First, type

>> Y = load(’/examples/Testing/SwissRollSample.txt’);

at a command prompt. To plot Y , use the plot3 command:

>> plot3(Y(:,1),Y(:,2),Y(:,3));

after rotating correctly you will see the swiss roll shape.
Now we compute

>> [K L] = rca1pc(Y,20);

here 20 is around the diameter of the point cloud. Check K against /exam-
ples/Testing/SwissRollonediagram.txt to verify output if you like. Note that
the 1-dim persistence diagram K has only one dot of “large” persistence, which
makes sense.

2.2 Rips Filtration on ’Distance Matrices’

If you want to compute a Rips filtration using a different metric, then you just
use the rca1dm command in the following form

>> [I J] = rca1dm(D,distanceBoundonEdges);

Here D is a square matrix which stores the pairwise distances between the points
in your point cloud, and all other inputs and outputs are as in the description
of rca1pc.

Example. As a silly check that this command does what it says it does, we
take Y to be the swiss roll sample from above, and compute

>> D = squareform(pdist(Y));

That is, we let D be the Euclidean distance matrix for Y . Then we compute

>> [I J] = rca1dm(D,20);

and note that the diagrams are identical to before.

Local homology. If you examine the code for rca1dm, you notice that there
is no requirement that D encode an actual metric. Similarly, the defintion of a
Rips filtration does not demand a metric. All that is needed for D is symmetry
(D(i, j) = D(j, i)) and the fact that vertices have to come before their incident
edges (D(i, i) ≤ D(i, j)). This flexibility proves useful in the comptation of local
homology via LSD.m and then rca1dm.m, as we now describe.

First, type

>> X = load(’/examples/Testing/CrossSample.txt’);

This is a set of points sampled from a cross in the plane, as you can verify by
plotting. We will now compute a good approximation (see arXiv paper) to the

3

0

10

20

30

25

27

35

Figure 1: A simplicial complex along with a simplex-constant monotonic func-
tion.

persistent local homology diagram of X, with center point the origin, and radius
of 0.3. To do this, we first compute the local spherical distance matrix:

>> D = LSD(X,[0 0], 0.3);

As outlined in the arXiv paper, the ij-th entry of D now stores the smallest α
value such that Bα(xi) ∩ Bα(xj) ∩ ∂B0.3(z) 6= ∅. We then feed D to rca1dm,
with the radius as distance bound, to finish the computation:

>> [I J] = rca1dm(D,0.3);

Compare J to the output stored in /examples/Testing/CrossZeroDiagram.txt;
you should see four components of early birth, one with infinite lifetime.

Monotonic functions on simplicial complexes. The observation above
about the minimal requirements on D allows one to be quite flexible in using
Rips methodology on a variety of filtrations. For example, consider the simpli-
cial complex K shown in Figure 1. Recall that a monotonic simplex-constant
function f on K is a series of numbers f(σ), one for each simplex σ ∈ K, subject
to the requirment that f(τ) ≤ f(σ) whenever τ is a face of σ. Such a function
results in a filtration of K by sublevel sets of f , and thus persistence diagrams,
in the usual way.

Our package permits the computation of these diagrams, subject to an ad-
ditional restriction on f ; namely, the f -value on a simplex σ of dimension two
or greater must simply be the maximum f -value on any of the edges contained
in σ. If f obeys this restriction, then we can produce a matrix D which encodes
the values of f , as follows. We set D[i, i] to be f(vi) and D[i, j] to be the f -
value of the edge connecting vi and vj ; if vi and vj are not adjacent in K, then
set D[i, j] to infinity. Feeding D to rca1dm will then produce the persistence
diagrams for this filtration.

However, doing this requires that you first create an N ×N matrix D where
N is the number of vertices in K, and that will require too much memory for
large complexes. So we have included a different command, rca1mfscm, which
allows one to get around this. Specifically, you create a matrix (N + M) × 3
matrix S, where M is the number of edges. S must contain a row of the form
(i, i, f(i)) for each vertex vi, and a row of the form (i, j, f(i, j)) for each edge
between vi and vj . To create S in our example, type

>> S = [0,0,0;1,1,10;2,2,20;3,3,30;0,2,25;1,2,27;1,3,35];

4

Then feed S to rca1mfscm with the command

>> [I J] = rca1mfscm(S,36);

where we have chosen the distance bound to be larger than the maximum f -
value. In this example, J will store the only interesting information.

Please read the comments on rca1mfscm.m for further discussion of this idea.

2.3 Real-valued functions on intervals.

We have also included a different command, MorseFiltration.m, that computes
the 0-dim persistence diagram for the lower-star filtration associated to a func-
tion based on sample values along an interval. This code is optimized to be
extremely fast for precisely this simple situation, and can generally handle far
more input points than the commands above.

The basic command is

>> D = morseFiltration(f,aug,skew);

The output, D, stores the persistence diagram as a many-by-2 array. Here f is
a 1 × N array, representing the values of f sampled at N incremented points
along an interval. The other two outputs are Boolean. Aug (default = false)
indicated whether dots of persistence zero should be output, and skew (default
= false) indicates whether D should store birth-lifetime instead of birth-death.

Example. Load the following input:

>> W = load(’/examples/Testing/HarmonicPointSample.txt’);

which consists of 1000 points sampled over 5
4 periods of a harmonic, as can be

verified by plotting. We now extract the second column of this array and feed
it to the persistence code, as follows:

>> D = morseFiltration(W(:,2),false,false);

CheckD against the ouptut stored in /examples/Testing/HarmonicZeroDiagram.txt.

5

