
Geometric Multimedia Time Series

by

Christopher J Tralie

Department of Electrical and Computer Engineering
Duke University

Ph.D. Dissertation

2019

Copyright c© 2019 by Christopher J Tralie
All rights reserved except the rights granted by the

Creative Commons Attribution-Noncommercial Licence

http://creativecommons.org/licenses/by-nc/3.0/us/

Abstract

This thesis provides a new take on problems in multimedia times series analysis by
using a shape-based perspective to quantify patterns in time, which is complementary
to more traditional analysis-based time series techniques. Inspired by the dynamical
systems community, we turn time series into shapes via sliding window embeddings,
which we refer to as “time-ordered point clouds” (TOPCs). This framework has tra-
ditionally been used on a single 1D observation function for deterministic systems,
but we generalize the sliding window technique so that it not only applies to mul-
tivariate data (e.g. videos), but that it also applies to data which is not stationary
(e.g. music).

The geometry of our time-ordered point clouds can be quite informative. For
periodic signals, the point clouds fill out topological loops, which, depending on
harmonic content, reside on various high dimensional tori. For quasiperiodic signals,
the point clouds are dense on a torus. We use modern tools from topological data
analysis (TDA) to quantify degrees of periodicity and quasiperiodicity by looking at
these shapes, and we show that this can be used to detect anomalies in videos of
vibrating vocal folds. In the case of videos, this has the advantage of substantially
reducing the amount of preprocessing, as no motion tracking is needed, and the
technique operates on raw pixels. This is also one of the first known uses of persistent
H2 in a high dimensional setting.

Periodic processes represent only a sliver of possible dynamics, and we also show
that sequences of arbitrary normalized sliding window point clouds are approximately
isometric between “cover songs,” or different versions of the same song, possibly with
radically different spectral content. Surprisingly, in this application, an incredibly
simple geometric descriptor based on self-similarity matrices performs the best, and it
also enables us to use MFCC features for this task, which was previously thought not
to be possible due to significant timbral differences that can exist between versions.
When combined with traditional pitch-based features using similarity metric fusion,
we obtain state of the art results on automatic cover song identification.

In addition to being used as a geometric descriptor, self-similarity matrices pro-
vide a unifying description of phenomena in time-ordered point clouds throughout
our work, and we use them to illustrate properties such as recurrence, mirror sym-
metry in time, and harmonics in periodic processes. They also provide the base
representation for designing isometry blind time warping algorithms, which we use

iii

to synchronize time-ordered point clouds that are shifted versions of each other in
space without ever having to do a spatial alignment. In particular, we devise an
algorithm that lower bounds the 1-stress between two time-ordered point clouds,
which is related to the Gromov-Hausdorff distance.

Overall, we show a proof-of-concept and promise of the nascent field of geometric
signal processing, which is worthy of further study in applications of music structure,
multimodal data analysis, and video analysis.

iv

To my parents, John Tralie and Mary Poteau-Tralie, my brother James Tralie,
and my partner Celia Litovsky for providing strong support and love during an
incredibly unpredictable Ph.D. experience

v

Contents

Abstract iii

List of Abbreviations xi

List of Symbols xiii

Acknowledgements xv

1 Introduction 1
1.1 Block Windowing of Time Series/Time-Ordered Point Clouds 4

1.1.1 Formal Definitions . 6
1.1.2 Sliding Window Length and Normalization 7
1.1.3 Community-Accepted Feature Maps (CAFMaps) 9

1.2 Self-Similarity Matrices (Self-Similarity Matrix (SSM)s) And Cross-
Similarity Matrices (Cross-Similarity Matrix (CSM)s) 11
1.2.1 Self-Similarity Matrices . 11
1.2.2 Cross-Similarity Matrices . 12
1.2.3 Fast Code . 14

1.3 Geometric Feature Summaries . 15
1.4 Isometry Blind Time Warping And Alignment 19
1.5 Summary of Novel Contributions . 21

2 Background 23
2.1 Topology / Topological Data Analysis 23

2.1.1 Simplicial Homology . 26
2.1.2 Vietoris-Rips Filtrations And Persistent Homology 30
2.1.3 Persistence Diagram Comparison And Stability 37
2.1.4 Computational Complexity . 38

2.2 Nonlinear Time Series Analysis / Dynamical Systems 39
2.2.1 Takens’ Delay Theorem . 39
2.2.2 Torus State Spaces: Periodicity And Quasiperiodicity 42
2.2.3 Connections To SSMs and Fourier Analysis 45

2.3 Manifold And Metric Learning . 46
2.3.1 The Graph Laplacian . 46

vi

2.3.2 Laplacian Eigenmaps / Generalized Fourier Modes 47
2.3.3 Reordering Signals with Laplacian of Sliding Windows 51
2.3.4 Diffusion Maps . 52
2.3.5 Similarity Network Fusion . 55

2.4 Sequence Alignment . 56
2.4.1 Levenshtein Distance And Variants 57
2.4.2 Smith Waterman Sub-Sequence Alignment 61
2.4.3 Dynamic Time Warping . 63
2.4.4 Fréchet Distance . 69

2.5 Music Signal Processing . 70
2.5.1 Timbral Features . 70
2.5.2 Mel-Frequency Cepstral Coefficients (Mel-Frequency Cepstral

Coefficients (MFCC)s) . 72
2.5.3 Automatic Beat Tracking . 73
2.5.4 Chroma Features . 75
2.5.5 Audio Fingerprinting . 77
2.5.6 Loop Ditty . 79

3 Cover Song Identification Fusing MFCC Shape Sequences And Chroma 81
3.1 Automatic Cover Song Identification 82

3.1.1 Our Contributions . 83
3.1.2 Prior Work . 83

3.2 MFCC-Based Time-Ordered Point Clouds from Blocks of Audio . . . 85
3.2.1 Beat-Synchronous Block/Windowing 85
3.2.2 Euclidean Self-Similarity Matrices 86
3.2.3 Global Comparison of Two Songs 89

3.3 Feature Fusion Incorporating Pitch 93
3.3.1 Blocked HPCP Features . 94
3.3.2 Late Similarity Network Fusion 95
3.3.3 Early OR Fusion . 95
3.3.4 Early Similarity Network Fusion 96
3.3.5 Early Fusion Examples . 98

3.4 Results . 98
3.4.1 Covers 80 Dataset . 98
3.4.2 “Blurred Lines” Music Copyright Controversy 104

3.5 Other Geometric Features . 105
3.5.1 Space Curve Curvature/Torsion Scale Space 105
3.5.2 Velocity And Curvature Results 107

3.6 Conclusions And Future Work . 108

vii

4 Sliding Windows of Periodic Videos 109
4.1 Basic Scheme . 109

4.1.1 Sliding Window Videos . 109
4.1.2 Geometry of Sliding Window Videos 111

4.2 Prior Work in Periodic Videos . 113
4.2.1 1D Surrogate Signals . 113
4.2.2 Self-Similarity Matrices . 113
4.2.3 Miscellaneous Techniques for Periodic Video Quantification . . 116
4.2.4 Our Work . 116

4.3 Theoretical Analysis of Eulerian Periodic Videos 117
4.3.1 Basic Model with Mirror Symmetry 118
4.3.2 The High Dimensional Geometry of Repeated Pulses 120
4.3.3 The Möbius Strip Geometry of Harmonic Repeated Pulses . . 121

4.4 Practical Issues in Sliding Window Videos 123
4.4.1 Reducing Memory Requirements with SVD 123
4.4.2 Delay Independent Memory And Computation with Diagonal

Convolution . 125
4.4.3 Normalization And Scoring 126
4.4.4 Window Size . 128
4.4.5 Fundamental Frequency Estimation 129

4.5 Ranking Videos by Periodicity . 130
4.5.1 Automated Techniques for Ranking 130
4.5.2 Human Hodge Rank Aggregation 134
4.5.3 Results . 136

4.6 Dynamics in Vocal Fold Videos . 137
4.6.1 Comparisons To Standard Techniques 140

4.7 Conclusions / Future Work . 142

5 Isometry Blind Time Warping 143
5.1 Introduction . 143
5.2 Prior Work on Time-Ordered Point Cloud Alignment / Re-Parameterization143

5.2.1 Procrustes Alignment / Iterative Closest Points 144
5.2.2 Canonical Correlation Analysis 145

5.3 Self-Similarity Images And Metric Alignment 146
5.3.1 Induced 2D Warping Functions 146
5.3.2 Gromov-Hausdorff Distance 148
5.3.3 Isometry-Blind Dynamic Time Warping (IBDTW) Distance

Definition . 149
5.3.4 First Last Distance . 149
5.3.5 A Greedy Algorithm Lower Bounding The IBDTW 151

5.4 Critical Point Topological Time Warping 156
5.4.1 SSM Critical Points Are Preserved under Time Warps 157
5.4.2 The Geometry behind Critical Points in SSMs 159

viii

5.4.3 Quantifying with Persistence of Sublevelset Filtrations 160
5.5 Synthetic Experiments . 164
5.6 Future Work . 167

A Curvature And Torsion of Space Curves 168
A.0.1 Basic Definitions . 168
A.0.2 Generalizing Beyond Arc-Length Parameterizations 169

Bibliography 173

Alphabetical Index 190

Biography 193

ix

x

List of Abbreviations

CAFMap Community-accepted feature map. vii, 9

CQT Constant-Q Transform. vii, 82

CSM Cross-Similarity Matrix: A matrix of distances between two time-ordered
point clouds. vii, 11–13, 15, 65, 68, 70, 90, 91, 93, 96–98, 107

CSTWM Cross-Similarity Time-Warp Matrix: A cross-similarity matrix which
stores cost of time warping all pairs of rows between self-similarity matrices.
vii, 151, 153, 155, 156

DTW Dynamic Time Warping: An algorithm for aligning time-ordered point clouds
in some metric space. vii, 63–70, 92, 93, 143, 144, 146, 149, 151, 152, 154–156

FLDTW First Last Dynamic Time Warping: An new distance for aligning time-
ordered point clouds that have been transformed or are in different spaces.
Weaker and easier to solve than IBDTW. vii, 149

GPU Graphics processing unit. vii, 155

IBDTW Isometry Blind Dynamic Time Warping: An new distance for aligning
time-ordered point clouds that have been transformed or are in different spaces.
A restricted version of the Gromov-Hausdorff Distance. vii, 149, 151–153, 156,
164, 166, 167

MFCC Mel-Frequency Cepstral Coefficients. vii, 55, 72, 75, 82–86, 89, 91, 93, 97,
98, 102–105, 107, 108

PCA Principal Component Analysis (also known as the Karhunen-Loève Transform
or Empirical Orthogonal Functions). vii, 5, 21, 33, 40, 43, 44, 46, 79, 86, 112,
116, 118, 119, 125, 126, 137–141

SSM Self-Similarity Matrix: A time-ordered symmetric matrix of all pairwise dis-
tances between points in a time-ordered point cloud. vii, 11, 12, 45, 54, 57,
83–86, 89–91, 96–98, 102–104, 107, 108, 113, 121, 124, 132, 143, 144, 146, 151,
156, 157, 159–164, 166, 167

xi

STFT Short-Time Fourier Transform. vii, 9, 70–72, 74

TOPC Time-Ordered Point Cloud. vii, 4–7, 10, 11, 13, 15–19, 21, 26, 30, 63–66,
68, 69, 79, 130, 143, 148, 149, 151–153, 159, 164, 166, 167

xii

List of Symbols

Brpxq A ball of radius r in some metric space. vii, 31

βk The kth Betti number. vii, 29, 30, 35, 36

B Boundary operator on a chain complex. vii, 26–30, 34, 35, 47

δ Co-boundary operator on a chain complex. vii

G A community-accepted feature map. vii, 9

C Correspondence. vii, 20, 148

Π Set of All Correspondences. vii, 148

F A Fourier Transform (either DFT or continuous Fourier Transform, based on
context). vii, 9, 120

F An algebraic field. vii, 26

||X||F The Frobenius norm of a matrix (the square root of the sum of the squares
of the entries). vii

κ Unsigned Curvature. vii, 169, 171

pM, dq A metric space with distances d. vii, 2, 6, 7, 11, 12, 31, 32, 69

M A Riemannian manifold. vii, 39, 40

C The complex numbers. vii

Z The integers. vii

R The real numbers. vii

ψ A state transition function in a dynamical system. vii, 39–41, 43

S p-Stress. vii, 148, 149

xiii

τ Unsigned Torsion or Kendall-Tau score (clear from context). vii, 169

W Warping Path. vii, 63, 149, 151, 152, 154

Ω Set of All Warping Paths. vii, 63, 149

xiv

Acknowledgements

To my primary mentors, special thanks Guillermo Sapiro for rescuing me when my
first adviser left Duke, for being incredibly flexible with my choices of research topics,
and for cultivating such a rich and vibrant community of international researchers,
from whom I benefited tremendously. Thanks to John Harer for his kind, collab-
orative spirit, for taking me under his wing with patience and for putting me on
the path to being a mathematician in addition to an engineer (which has always
been a dream of mine), and for investing so much care into my personal growth and
professional development. Thanks to Paul Bendich for being such an excellent close
collaborator, for showing me how to mentor by example, and for normalizing a range
of difficult and wacky experiences that have arisen for me as a budding academic
(not to mention opening my eyes to some amazing Szechuan places in the Triangle
area). Thanks to Jose Perea for so much help and guidance during the latter part of
my grad career, for putting me up at the Wild Goose Inn(!) at Michigan State, for
inviting me to Munich, for having such incredible patience for the gaps in my math
knowledge, and for being a great role model of an early career research academic
with such a positive attitude and attention to refinement of ideas (not to mention an
enormous inspiration for this dissertation with his Sw1Pers and time series work).
And thanks to Loren Nolte for being on every single one of my committees before and
after I switched areas, and for teaching some of my favorite classes in ECE (I’m sorry
I never got to T.A. for you!). Finally, thank you to Martha Absher for accepting
me to the Duke Engineering REU 8 years ago, and for valuable advice on my NSF
Graduate Fellowship application. It’s largely due to you that I started on this path!

During my time at Duke I was in three different research groups all with some
pretty incredible people. From the Sapiro group, shout outs in particular to Jordan
Hashemi, George Chang, Alasdair Newson, and Mauricio Delbracio for being great
engineering collaborators in one way or another. From the Harer group, thanks to
Ellen Gasparovic for work on geometric models, thanks to Justin Curry for some
recent great collaborations on topological distances that I hope can continue for a
long time, thanks to Rann Bar-On for being a crazy coder and a generally hilarious
presence, and thanks to Francis Motta for being a model topology teacher and possi-
bly the nicest person I’ve ever met. And from my RFID lab back in the day, thanks
to Stewart Thomas and Josh Ensworth for being awesome friends and colleagues,
with whom I’ve sadly lost touch but whose company I really valued early on (and

xv

who helped keep me sane). Finally, even though he wasn’t officially in any of my
groups, thanks to Dmitry Vagner for being a great sounding board for ideas about
research, teaching, and mental health (and also a rare shared appreciation of Lil B).

On the research environment side and grant side, I must give a hearty thanks to
Information Initiative at Duke (IID), especially Paul Bendich, Robert Calderbank,
and Kathy Peterson, for providing an excellent place to work, collaborate, and see
lots of talks on the third floor of Gross Hall. This was orders of magnitude better
than the lab closet I worked in my first two years. Thanks to the staff in the ECE
department, and in particular to Amy Kostrewa for her hard work and for helping me
through some difficult transitions, to helping to secure sixth year funding and travel
funding, for tolerating a lot of mistakes I made, and for maintaining such a great
balance between personal and professional while caring for all grad students in the
department. Also thanks to an NSF Graduate fellowship and NSF Research Training
Grant ”Structure in Complex Data,” NSF-DMS 1045133. I would have been forced
to drop out of the Ph.D. or transfer to another school without that safety net! I hope
our government expands these types of research safety nets. Also, a sincere thanks to
Mythlogic for making a crazy custom laptop which was my “lab on the run,” which
was funded in part by Data Expeditions at Duke. And on a related note, thanks
to the makers of Doom 2016 for providing a clutch avenue for me to blow off steam
during the latter part of my dissertation writing.

On the teaching side thanks to Hugh Crumley for his mentorship in the College
Certificate in Teaching (CCT) and for putting me in touch with so many other peo-
ple at Duke who care about teaching. Thanks also to the Bass Family Instructional
Teaching Fellowship for giving me the opportunity to design my own course in 3D
geometry from scratch so early on in my career, and for the Duke CS and Math
DGSs for being so accommodating with my course design. Special thanks to Steven
Espinosa for being so open and honest about his own teaching experiences and for
voluntarily checking in on me before every single lecture I gave that semester, pro-
viding tons of valuable feedback. Thank you also to all of my students in that class
and all of the students I mentored in independent studies at Duke and NC Science
And Math. These were some of the most fun and valuable experiences during my
Ph.D., and I can’t even quantify how much I learned from you (and continue to as
you reach back out to me and share things).

Special thanks are also due to my spiritual advisers. I thank Sumi Kim for being
an excellent, open, and caring Buddhist Chaplain, who was gives so much of herself to
the community and to individuals and who was positively a joy to work with during
my time as BMCD president. I also thank Holly Rogers for providing incredible
mindful meditation seminars and invaluable individual help and firm guidance on
holistic approaches to mental health that radically changed my world view and helped
to de-stigmatize a lot of things I had experienced during my life. Finally, I thank Dr.
Mazella Fuller for seeing me through the ups and downs of my grad school experience
over the years and teaching me how to view the nuances and complexities of all of
my experiences and to see their value in helping me to be a better mentor, partner,

xvi

and member of my community.
I also owe some thanks to Prince Rogers Nelson, who was a huge musical inspira-

tion and anchor during undergrad and grad school, and who I sadly found out passed
away right in the middle of an NSF workshop last spring. On that note, thanks also
to Terrace F. Club (FOOD = LOVE) at Princeton for taking me back, feeding me,
and providing awesome shows at random intervals during grad school, including the
single best concert of my life by Phil Lesh. And thanks to Harry Davidson from the
Duke Symphony Orchestra for being the best conductor I ever had.

Finally, I owe so much gratitude to my family and closest friends who showed
me unconditional love throughout my time at Duke. When the going got tough,
my parents made sure I always had a safe place to land back in Fort Washington,
PA, and we all continued to grow together during these six years. By the same
token, thank you to my aunts and uncles (all 14 pairs of them) and cousins (all 32 of
them) for keeping up with me after I had to move away, particularly to Aunt Patty,
Uncle Bill, Aunt Leslie, Uncle Mark, Aunt Lynne, Mike/Jen, Alison/Andrea, and
Pat/Tim. I’m looking forward to being closer to everyone again. Thanks also to Dan
Creamer, a teacher at George Washington High School in Philadelphia, who is an
incredible public servant and a lifelong friend who cares deeply about my personal
development and who’s kept me honest as a new teacher. Thanks to my rad group
of college friends (esp. Carlton, Johannes, Anna, Jason, Sully, Chi, Vinayak, Chris
K) who kept on lovin me even after I became a workaholic in grad school. Thanks to
Craig LaBoda for being a partner in crime in ECE and a mosh pit and crazy movie
buddy throughout grad school. Thanks to Jordan “Jordon Bensoff” Besnoff for being
the best d00d and roommate I could have asked for the past 5 years, and not only for
tolerating my crazy antics but, much to his chagrin, for actually starting to imitate
some of them! (Not to mention some pr0 moments at the Durham sk8park). Thanks
to Javier Zapata for being a hidden gem from the business school put up with me for
a year as a roommate after finding me on Duke list (and who provided much hilarity
at much needed times). Finally, thank you to my partner Celia Litovsky for being
such a sweetie / ride or die chick and for being the most supportive and nurturing
partner anyone could ask for. And of course, thanks to the amazing bearded dragon
Titan Besnoff and the best feline I’ve ever met, Layla Ophelia Litovsky (LOL).

xvii

1

Introduction

Figure 1.1: A block diagram of the general geometric time series processing pipeline
that unifies all of the work in this thesis. Each stage is annotated with some of the
specifics from each chapter where applicable.

1

This work is the marriage between time series problems in engineering and applied
signal processing and concepts in metric geometry and topology. While one’s first
instinct is often to tackle time series problems with analysis and traditional statisti-
cal modeling, we show some surprising advantages to adding geometric language to
the signal processing pipeline. This allows us to make contributions in diverse areas
of multimedia data analytics. In particular, in music information retrieval (Chap-
ter 3), we show that adding information about the “shape” of a time series of MFCC
features (a common set of audio features covered in the background in Section 2.5)
allows them to be used for cover song identification, where they were previously
thought not to capture any relevant information. We demonstrate that combining
these new shape-based MFCC features with more traditional pitch-based features
significantly improves cover song clique finding accuracy. In the areas of video pro-
cessing and health-related video monitoring, we show that the “shape” of chunks
of videos can help to rank periodicity of the videos or to determine the presence
of quasiperiodic phenomena correlated to biological anomalies in high speed videos
of resonating vocal cords (Chapter 4). We highlight the ways in which our work
complements off-the-shelf Fourier analysis techniques. Finally, in multimodal data
processing (e.g. video to audio), geometry and topology give a way of expressing
data that is closer to being domain independent, and we demonstrate this by show-
ing how to use geometric and topological ideas to do time warping without aligning
shapes which are rotated/translated/flipped versions of each other (Chapter 5).

In all of the above applications, there are common tools which we will introduce
in this chapter, as indicated in the general pipeline in Figure 1.1, and we will summa-
rize them in this chapter. But first, we start with the most general possible definition
of a time series:

Definition 1. A time series X is a metric curve parameterized by the real numbers
R`. It is endowed with a metric space pM, dq for measuring distances between the
objects. A N-length sampled time series is a subset XN Ă X indexed by a subset of
the natural numbers, often written as X1, X2, ..., XN

Many people start by defining time series as a sequence indexed by a subset of the
natural numbers, but when we do theory, it will often be useful to think of the time
series as a function from the positive reals f : tÑ pM, dq. This makes it possible to
defer discussions of sampling until the very end. However, most of the real data we
deal with has been uniformly sampled and is treated in a discrete fashion.

Examples of time series include sequences of real numbers or integers, as is the
case with audio (Chapter 3), which is often referred to as a 1D time series. In this
case, the metric between values is simply the absolute distance between their values.

2

Figure 1.2: An audio novelty function (Ellis (2007a), Böck and Widmer (2013))
for Prince’s “Pop Life.” This signal has been designed to preserve percussive events
correlated with beat onsets, while being at a much lower sample rate than the often
cumbersome 44100hz standard music sample rate.

Figure 1.3: An example video of someone performing a 360 pop shove-it to rock n’
roll on a quarter pipe. We analyze such videos as geometric time series in Chapter 4.

Figure 1.2 shows an example of a 1D sampled, real-valued time series correlating to
rhythmic events in a Prince song. But the objects in question can be much more
complex. For instance, a video is a sequence of images (Chapters 4, Figure 1.3)),
and one can even consider a sequence of 3D shapes in this framework (Figure 1.4).
In these cases, the chosen metric spaces need to be designed with more care.

One of the advantages of geometric and topological tools is that, in the abstract,
our techniques can be applied equally to this diverse array of applications, regard-
less of the complexity of the underlying representations. For example, we think of
a periodic time series as a topological loop, regardless of whether it represents rep-
etitions in audio (Chapter 3) or expansion or contraction of the vocal folds in high
speed videos of speech (Chapter 4). But an abstract mathematical approach is usu-
ally not enough, and we also often need to apply application-specific preprocessing
techniques. When we do this, we usually leverage a long line of work from whatever
community we are looking at, which we will highlight carefully in each chapter. As

3

1

2

345

6

7

8
9 10 11 12

13

14

Figure 1.4: An example 3D video time series of a mesh of an expanding and con-
tracting heart. Each mesh has been projected to R2 using classic multidimensional
scaling after applying the Gromov-Hausdorff metric (Section 5.3.2). Large positive
metric stress with respect to frame 1 is indicated with hot colors. Ultrasonic heart-
beat data is courtesy of http://lazax.com/www.cs.columbia.edu/~laza/html/

heart3D/

such, this work is equal parts math and engineering.
Figure 1.1 shows a block diagram which outlines the general pipeline we follow

across all applications. For the rest of the intro, we will provide some high level details
of that pipeline, including blocking and sliding window embeddings (Section 1.1),
Community-Accepted Features (Section 1.1.3), geometric feature summaries (Sec-
tion 1.3) (including self-similarity and cross-similarity matrices (Section 1.2)), and
time warping (Section 1.4).

1.1 Block Windowing of Time Series/Time-Ordered Point Clouds

One of the key tools we use for translating time series into geometric objects is
the so-called “delay embedding” or “sliding window” procedure, which is commonly
used in dynamical systems and nonlinear time series analysis (Kantz and Schreiber
(2004)). Sliding window embeddings convert time series into time-ordered point
clouds (TOPCs), which live in what is often referred to as the phase space of the
dynamical system. Our particular flavor of this is a so-called “block/window” pro-

4

http://lazax.com/www.cs.columbia.edu/~laza/html/heart3D/
http://lazax.com/www.cs.columbia.edu/~laza/html/heart3D/

Figure 1.5: An example of block-windowing a 1D time series which is colored
by time. A time series is shown on the top row, and three overlapping blocks are
extracted. In each block, a sliding window is then taken (gray interval) and slid along
to the right (gray arrow). The second to bottom row shows 2D PCA of the resulting
Time-Ordered Point Cloud (TOPC)s, where the colors of the points correspond to
the time at which the window started in the original time series. The bottom row
shows the corresponding self-similarity matrices for each block.

5

cedure, and all of the applications in this thesis are a variation on the theme. A
block is a contiguous chunk of a time series that is pulled out for processing. Within
each block, a window is an even smaller chunk of the time series. A collection of
windows within the block, ordered by time and endowed with some metric, forms
a time-ordered point cloud associated with that block, and the union of all blocks
covers the whole time series. Blocks and windows are similar to the “texture win-
dows” and “analysis windows,” respectively, in a well known paper on music genre
recognition by Tzanetakis and Cook (2002), but we take a more explicitly geometric
interpretation than the authors of that paper.

1.1.1 Formal Definitions

We now define block/windowing more formally, and link it to some similar schemes
in the open literature

Definition 2. Given a time series X defined in an interval ra, bs, a block is a subset
of the time series defined on the interval rai, bis, where ai ă bi. “Blocking” the time
series refers to taking a set of K such blocks i so that

• ai ă ai`1, bi ă bi`1

•
K
Ť

i“1

rai, bis “ ra, bs

Blocking is useful when we want to process small chunks of the time series in-
dependently. Blocking is also useful when there is drift present in the time series
(Section 1.1.2), because we can apply normalization within small chunks of the time
series which haven’t drifted.

Often, blocks overlap each other (i.e. ai`1 ă bi ă bi`1), so that some of the data
is redundant between blocks. One reason for this is robustness, since it increases
the chance that a block will exactly capture a section of the signal we are looking
for. It can also be viewed as a form of data augmentation, which can help to get a
better picture of the time series with a larger collection of blocks. Overlapping blocks
have been used, for example, to improve hashing in audio fingerprinting (Wang et al.
(2003)) (aka the “Shazam” service)) and to improve recovery guarantees in phase
retrieval from Fourier Magnitude coefficients (Eldar et al. (2015)). More generally,
some nontrivial overlap is usually present in standard spectrogram presentations
of 1D time series. Note also that very similar schemes are present in image and
video processing in applications of denoising and inpainting with overlapping patches
(Buades et al. (2005), Barnes et al. (2009)).

Now within each block, we have a sliding window defined as follows:

Definition 3. Start with a time series f : tÑ pM, dq and a block Bi in the interval
rai, bis. Given a time index t P rai, bis, an integer M ě 0, and a real number τ ą 0,
then the sliding window in block Bi at time t is

6

SM,τfptq “

»

—

—

—

–

fptq
fpt` τq

...
fpt`Mτq

fi

ffi

ffi

ffi

fl

P pM, dqM`1 (1.1)

where pM, dqM`1 is some product metric over the product space MM`1

A collection of sliding windows at K different times t1, t2, ..., tK within a block,
ordered by time, is known as the Time-Ordered Point Cloud within that block. The
product Mτ is referred to as the window size of the sliding window.

Note that a “time-ordered point cloud” can refer to any collection of points in
a metric space indexed by time, but we often use it to refer specifically to a sliding
window embedding. Note also that we usually chose the K time samples in the block
to be uniformly spaced over rai, bis. And in practice, we are usually given samples of
a time series as opposed to a continuous specification. If interpolation is possible in
the metric space pM, dq, then we do it (e.g. linear, sinc, or spline interpolation for 1D
time series). Sometimes, however, interpolation is not possible, and we are limited
to the samples we have (τ “ 1 by default). In this case, it is helpful to use tools
from metric geometry that don’t care about means, derivatives, etc. (Chapter 5).

Blocking aside, sliding window embeddings have been leveraged in a diverse set
of applications, including cover song identification Serra et al. (2009) (which will be
explained more in context in Chapter 3), music structure analysis (Bello (2011)),
EEG data analysis (Stam (2005); Plesnik et al. (2014)), activity and gait recognition
(Frank et al. (2010)), and gene expression time series data (Perea et al. (2015)), to
name a few. There have also been several applications of this idea to video analysis
specifically (Schödl et al. (2000), Huang et al. (2010), Venkataraman and Turaga
(2016), Tralie (2016)), which we will explain more in context in Chapter 4.

Finally, Figure 1.5 shows an example of block-windowing a synthetic 1D time
series, using the Euclidean metric. Notice how in each block, the time-ordered point
cloud captures the dynamics of the signal in the block geometrically. The first block
corresponds to a perfectly periodic region, and as we will explain more in Chapter 4,
matching the window size to the length of the period gives rise to a circular point
cloud. The middle block captures a transition, which starts off in a periodic section
and then moves over to another periodic section in a different part of the embedding
space. The rightmost block encapsulates an amplitude modulated periodic signal,
which turns into a spiral in the embedding.

1.1.2 Sliding Window Length and Normalization

We have now defined precisely what we mean by blocks and windows, but how
do we choose the parameters such as window size, interval sampling, etc? This
is usually application specific, but there are a few common themes. First of all,
a longer window size (i.e. larger M in Equation 1.1) means that there is more

7

context summarized geometrically. In a way which will be made more precise with
Taken’s Delay Embedding Theorem (Theorem 2), a choice of more delays means we
can effectively express higher order derivative information about the time series and
more accurately reconstruct the state space of the underlying dynamical system. For
a quick suggestive example, note that a linear transformation (specifically, a shear
transformation) of the single delay embedding in a window S1,τ rfptqs can change
into a coordinate system of a time series point and a discrete derivative, and similar
transformations can be shown for higher order derivatives.

„

1 0
´1{τ 1{τ

 „

fptq
fpt` τq

“

„

fptq
1
τ
pfpt` τq ´ fpτqq

«

„

fptq
f 1ptq

(1.2)

Knowing a derivative at a particular time point can tell us the difference between
“going up” and “going down,” even if we are passing through the same point, and
higher order derivatives provide further disambiguation. However, when the window
size is too long, there can be practical concerns about memory, especially when the
time series objects already take up a lot of memory, such as video frames. We
provide a computational scheme whose processing time and memory requirements
are independent of window size for videos in (Chapter 4), given that τ “ 1 and there
is no interpolation.

There are similar questions for how to choose the time sample intervals within
each block, where choosing more guarantees better ε sampling of the continuous
geometric object we want to summarize, but costs more memory and computation
time. Finally, given that M is sufficiently large, choosing τ is important in so far
as the window size Mτ affects the geometry. For periodic processes, Broomhead
and King (1986) suggests choosing a window size equal to the period, but as we will
show in Chapter 4, any integer of a half multiple of a period works when quantifying
periodicity.

There is one more very important practical concern which will be addressed in an
application-specific manner. Sometimes, there is drift present in the time series, or
there are changes in amplitude between blocks of a time series that are otherwise very
similar. To mitigate this, we introduce various normalization schemes. Two basic
normalization schemes that we sometimes employ are “Z-normalization” and “Point-
Centering/Sphere Normalizing” (Perea and Harer (2015)) and they are defined as
follows for point clouds in Euclidean spaces

Definition 4. Given a point cloud X in a Euclidean space, let X̂ denote its mean.
Then for each xi P X thought of as a column vector, the z-normalized version is

zi “
xi ´ X̂

||xi ´ X̂||
(1.3)

the point-centered/sphere-normalized version is

8

pi “
xi ´ px

T
i 1q1

||xi ´ pxTi 1q1||
(1.4)

These two types of normalization are very similar, except Z-normalization sub-
tracts off the mean point from all points, while the latter subtracts the mean coordi-
nate off of each point point-wise. Both are attempts to mitigate drift. Amplitude is
then controlled for by making the points all unit norm in both cases. Point-centering
has theoretical reasons for being a good choice for sliding window videos when trying
to quantify periodicity (Chapter 4), while Z-normalization is shown empirically to
be a crucial step for cover song identification where there are lots of variations in
loudness between cover versions of the same song (Chapter 3).

1.1.3 Community-Accepted Feature Maps (CAFMaps)

We now have a well-defined scheme for turning signals into point clouds and some
idea of parameter choices and normalization schemes. However, a raw sliding window
embedding on blocks is sometimes unwise, and it can be advantageous to additionally
apply feature transformations in the sliding window space before further processing.
For instance, in audio applications, the sample rate is 44100hz, and trying to capture
windows of a half of a second leads to a noisy raw embedding spanning 22050 sam-
ples. Instead, audio information retrieval communities often summarize these win-
dows with much lower dimensional features that are designed to retain perceptually
relevant information (these features will be described more in Section 2.5). Figure 1.6
shows the drastic difference applying these “community-accepted features” (CAFs)
onto the sliding window points can have on the resulting geometry.

More formally, we have the following soft definition of a “Community-Accepted
Feature Map”(CAFMap):

Definition 5. Given a sliding window block SM,τ rfptqs Ă pM1, d1q, a Community-
Accepted Feature Map is a (often nonlinear and non-invertible) map G

G : SM,τ rfptqs Ă pM1, d1q Ñ pM2, d2q (1.5)

designed to preserve relevant information in a particular application domain.

We note right away that the Short-Time Fourier Transform (STFT) is a special
case where G “ F , and F is simply the Discrete Fourier Transform on each window
independently. In this special case, G happens to be an isometry. Another common
choice is the audio spectrogram, where G “ |F |; or in other words, the Short-Time
Fourier Magnitude Coefficients. This is no longer even invertible, but inversion
is possible in some cases when the windows overlap enough, a problem known as
“phase retrieval” (Eldar et al. (2015), Griffin and Lim (1984)). Likewise, in video
applications, one could choose a map from color frames to grayscale, which is also
sometimes invertible with enough prior information.

9

Figure 1.6: Comparing sliding window embeddings with and without summarizing
community-accepted features (CAFs) on audio at a sample rate of 44100hz and
a window size of 22050 (0.5 seconds). The sliding window embedding of the raw
audio is much more spread out and noisy and can only be fully explained in a higher
dimensional space, while summarizing each sliding window with 12 MFCC coefficients
leads to clearer patterns with fewer dimensions.

More commonly, G is not invertible, but it preserves something relevant about
the task at hand. For an extremely “lossy” example, most audio novelty functions
(e.g. Figure 1.2), are obtained with a G that maps to a single real number for
every window, which is often some function of the velocity of the sliding window at
that point in time. In other words, broadband percussive events cause the sliding
window embeding to “jump” from one point to another, so this function is useful
for retaining rhythmic information. We provide many more examples of community-
accepted features from music information retrieval in Section 2.5, such as “MFCC”
and “Chroma,” which we use in cover song applications (Chapter 3).

Finally, we note that when we need to normalize after applying these maps, Z-

10

normalization makes the most sense here. Since these time-ordered point clouds no
longer apply to sliding window embeddings, and the coordinates aren’t simply lags
of each other and are likely unrelated, it doesn’t make sense to subtract the average
coordinate. This is why we exploit Z-normalization with our cover songs application.

1.2 Self-Similarity Matrices (SSMs) And Cross-Similarity Matrices
(CSMs)

1.2.1 Self-Similarity Matrices

Now that we have shown how to turn a time series into a time-ordered geometric
object, we introduce one of the most important time-ordered geometric descriptors
that unifies all of the work in this thesis:

Definition 6. Given a time-ordered space curve parameterized by the unit interval
γ : r0, 1s Ñ pM, dq, a Self-Similarity Image is a function D : r0, 1s ˆ r0, 1s Ñ R so
that

Dγpi, jq “ dpγpiq, γpjqq (1.6)

If d is the L2 metric on Rd, a common choice, then this is referred to as a
Euclidean Self-Similarity Image.

The self-similarity image completely summarizes the metric information of the
curve, disregarding a fixed ambient space with a fixed position and orientation in
that space. In other words, self-similarity images are naturally blind to isometries
of the underlying space curve. This makes the self-similarity image attractive for
applications where it is desirable to be invariant to translation/rotation/flips of the
curve.

Note that a “time-ordered space curve” is simply a continuous version of a time-
ordered point cloud, and as such a self-similarity image is defined on a continuous 2D
domain. In practice, self-similarity images must be sampled and treated as discrete
objects for time-ordered point clouds.

Definition 7. Given a time-ordered space curve γ : r0, 1s Ñ pM, dq, its correspond-
ing self-similarity image Dγ and a set of time indices t1, t2, ..., tK corresponding to a
time-ordered point cloud, so that t1 “ 0, tK “ 1, and ti ă ti`1, the Self-Similarity
Matrix(SSM) is an N ˆN matrix Mγ so that

Mγri, js “ Dγpti, tjq (1.7)

As an example, self-similarity matrices are shown on the bottom row of Figure 1.5,
corresponding to the respective blocks that they summarize in the blocked time series.

Self-similarity matrices have been used as a tool in pattern recognition across
many domains. Junejo et al. (2008) apply self-similarity matrices to the problem

11

of human activity recognition in video, where a video is treated as a time-ordered
point cloud mapped into a feature space designed to summarize the frames of the
video. They show that straightforward approaches using texture descriptors on self-
similarity matrices to match the resulting curves have shown promising results for
activity recognition, and this work inspired our approach to cover songs in Chapter 3.
Self-similarity matrices were also used as a tool to detect periodicity and symmetry
in video motion Cutler and Davis (2000) and in detecting copyright infringement in
online video uploads. In the music information retrieval community, self-similarity
matrices have been used on audio summarized in feature spaces, which can again
be viewed as curves in those feature spaces, starting with the pioneering work of
Foote (2000) which used a descriptor related to curvature in these images to detect
note boundaries, with much followup work for music structure understanding and
segmentation including more recent work by Bello (2009), Kaiser and Sikora (2010),
Serra et al. (2012) and McFee and Ellis (2014). In the dynamical systems community,
Euclidean self-similarity matrices are used as a format for reconstructing trajectories
up to isometry, from which dynamical statistics can be computed McGuire et al.
(1997).

In this thesis, self-similarity matrices are the unifying geometric descriptor across
all applications. In the chapter on sliding window videos (Chapter 4), they are used
to explain and motivate the reason to use sliding windows when quantifying time
series of periodic processes. In the cover songs application (Chapter 3), they are used
as geometric feature descirptors in their own right. In particular, we map from the
sliding window point clouds with N points into the space RNˆN under the Euclidean
metric. This makes sense, because these images tend to look similar for the same
songs performed with different instruments/singers/etc, even though the raw audio
and derived MFCC features are quite different (figure 3.3 shows an example). This
implies that small chunks of audio normalized properly are approximately isometries
of each other between cover version of the same song. Finally, we use self-similarity
images as the primary representation for designing isometry blind time warping in
Chapter 5.

1.2.2 Cross-Similarity Matrices

In addition to 2D symmetric matrices which compare a time-ordered point cloud to
itself, we also sometimes use general (not necessarily symmetric or even square) 2D
matrices which compare two time-ordered point clouds in the same metric space to
each other, known as “cross-similarity matrices” (CSMs).

Definition 8. Given a time-ordered space curve γ1 : R` Ñ pM, dq sampled at times
s1, s2, ..., sM and another time-ordered space curve γ2 : R` Ñ pM, dq sampled at
times t1, t2, ..., tN , the corresponding Cross-Similarity Matrix (CSM) between sampled
γ1 and γ2 is an M ˆN matrix Cγ so that

Cγ1,γ2ri, js “ dpγ1psiq, γ2ptjqq (1.8)

12

Figure 1.7: An example of a Euclidean cross-similarity matrix describing the dis-
tances between two curves. The time axes of the rows and columns are colored in
accordance with the time parameter in the respective curves. Two example points
are marked in the CSM where the curves get closer to each other relative to the
neighborhoods of the points.

Note that a CSM from a curve to itself sampled at the same time indices is an
SSM, but the CSM concept applies more generally to two curves. CSMs show up
mainly in alignment applications, where for time-ordered point clouds the ijth pixel
is the distance between the ith sliding window in the first point cloud and the jth

sliding window in the second point cloud. The alignment problem reduces to finding
a minimum cost path from the upper left to the lower right of the CSM image
(Figure 2.20).

Binary versions of these matrices can also be defined, both with an ε threshold

Bε
γ1,γ2

ri, js “

"

1 dpγ1psiq, γ2ptjqq ă ε
0 otherwise

*

(1.9)

or with a mutual k-nearest neighbors threshold

Bk
γ1,γ2

ri, js “

"

1, dpγ1psiq, γ2ptjqq ă minpεk1i, ε
k
2jq

0, otherwise

*

(1.10)

Where εk1i refers to the distance of the kth nearest neighbor of γ1psiq in γ2pt1, t2, ..., tMq,
and vice versa for εk2j. These are referred to as “cross-recurrence plots” (Marwan et al.
(2000), Serra et al. (2009)). An analogous version for self-similarity matrices, used
for analysis of dynamical systems, is known simply as a “recurrence plot” (Eckmann
et al. (1987), Marwan et al. (2007)) 1. Diagonal lines of ones in these matrices indi-

1 For more information on recurrence and cross-recurrence plots, the web site http://www.

recurrence-plot.tk has an exhaustive literature review on the subject, as of the time of writing
(2/2017).

13

http://www.recurrence-plot.tk
http://www.recurrence-plot.tk

1 de f getCSM(X, Y) :
2 ”””
3 Return the Eucl idean cros s ´s i m i l a r i t y matrix between the M po in t s
4 in the Mxd matrix X and the N po in t s in the Nxd matrix Y.
5 : param X: An Mxd matrix ho ld ing the coo rd ina t e s o f M po in t s
6 : param Y: An Nxd matrix ho ld ing the coo rd ina t e s o f N po in t s
7 : r e turn D: An MxN Eucl idean cros s ´s i m i l a r i t y matrix
8 ”””
9 #Fir s t , compute the squared magnitude o f each po int in X and Y

10 XSqr = np . sum(X∗∗2 , 1)
11 YSqr = np . sum(Y∗∗2 , 1)
12 #The squared d i s t anc e between x i and y j i s
13 # | | x i | | ˆ 2 + | | y j | | ˆ 2 ´ 2 x i ∗ y j .
14 #Broadcast the | |X | | ˆ 2 along each column and | |Y | | ˆ 2 along each row
15 C = XSqr [: , None] + YSqr [None , :] ´ 2∗X. dot (Y.T)
16 C[C < 0] = 0 #Before tak ing the square root , do t h i s in case
17 #numerica l i n s t a b i l i t y caused one o f the e n t r i e s to be
18 #l e s s than zero
19 re turn np . s q r t (C)

Listing 1.1: Fast Python/Numpy code for Euclidean SSM and CSM computation
exploiting matrix mutiplication and broadcasting

cate entire sequences matching between two time-ordered point clouds, a fact which
we will exploit heavily in our cover songs work.

In our work, we find the k-nearest neighbor version of the cross-recurrence plot
substantially boosts performance when aligning cover songs (Chapter 3). Intuitively,
in some cases, using binary k-nearest neighbors discards unnecessary and possibly
noisy metric information that could degrade performance.

1.2.3 Fast Code

Code for SSMs / CSMs

In our cover songs application (Chapter 3), we need to compute thousands of self-
similarity or cross-similarity matrices between TOPCs in high dimensional Euclidean
spaces, which necessitates some computational optimization. In this special Eu-
clidean case, it is possible to write very efficient code, based on the following math-
ematical fact about squared Euclidean distances between two vectors x,y P Rd:

||x´ y||22 “ x ¨ x` y ¨ y ´ 2x ¨ y (1.11)

Now let X be an M ˆ d matrix with each Euclidean point xi arranged along a
row, and let Y be the analogous N ˆ d matrix for the yjs. Let |X| be the N ˆ 1
matrix with the squared magnitudes of all of the xis along the rows, and let |Y | be
the analogous M ˆ 1 matrix for the yjs. Then the Euclidean cross-similarity matrix
can be written as the square root of the sum of three matrix multiplications:

14

1 de f CSMToBinary(D, Kappa) :
2 ”””
3 Turn a cros s ´s i m i l a r i t y matrix in to a binary cros s ´s i m l a r i t y matrix
4 I f Kappa = 0 , take a l l ne ighbors
5 I f Kappa < 1 i t i s the f r a c t i o n o f mutual ne ighbors to con s id e r
6 Otherwise Kappa i s the number o f mutual ne ighbors to con s id e r
7 ”””
8 N = D. shape [0]
9 M = D. shape [1]

10 i f Kappa == 0 :
11 re turn np . ones ((N, M))
12 e l i f Kappa < 1 :
13 NNeighbs = i n t (np . round (Kappa∗M))
14 e l s e :
15 NNeighbs = Kappa
16 #Do a merge p a r t i t i o n on each row
17 J = np . a r g p a r t i t i o n (D, NNeighbs , 1) [: , 0 : NNeighbs]
18 #Set up a spar s e binary cros s ´s i m i l a r i t y matrix
19 I = np . t i l e (np . arange (N) [: , None] , (1 , NNeighbs))
20 V = np . ones (I . s i z e)
21 [I , J] = [I . f l a t t e n () , J . f l a t t e n ()]
22 r e t = spar s e . coo matr ix ((V, (I , J)) , shape=(N, M))
23 re turn r e t . toar ray ()

Listing 1.2: Fast Python/Numpy code using merge partition to determine nearest
neighbors if a CSM has been precomputed

CSM “
a

|X|1T ` 1|Y |T ´ 2XY T (1.12)

where 1 refers to an appropriate column matrix of all 1s. Incidentally, this can be
used to show that the rank of a squared Euclidean cross-similarity matrix between
points in Rd is bounded by d ` 2, regardless of the number of points in X and Y ,
since the cross-similarity matrix is the sum of two rank-1 matrices and one rank-d
matrix.

Listing 1.1 shows how to exploit this fact in Python/Numpy using matrix multi-
plication and row/column broadcasting (in place of the outer product on the rank-1
matrices), which is quite fast in practice and can be easily parallelized on the GPU.

Fast Code for Nearest Neighbors

If we have already computed a full CSM, the fastest way to find all sets of k-nearest
neighbors is to use merge partition on each row to partition all of the kth smallest
elements to be at index k or less. In practice, this is faster than sorting, as we don’t
care that they are in order, just that they are all contiguous so that we can easily
extract them. The average time complexity of merge partition is OpNq per row, with
a worst case OpN2q, but in practice this is substantially faster than the ΘpN logNq

15

time complexity of merge sort, especially since it needs to be done on each row. The
code in Listing 1.2 shows how to do this in Python/Numpy.

1.3 Geometric Feature Summaries

Though self-similarity matrices play a key role in our work, there are many other
geometric descriptors can be used to summarize time-ordered point clouds in blocks.
For example, Tzanetakis and Cook (2002), who introduced a block-windowing pro-
cedure to the music information retrieval community, summarize each block by the
mean and variance of each CAF sliding window dimension over all windows in the
block, which could be viewed a simplified ellipsoid fitting of the time-ordered point
cloud in each block (ignoring covariance). Also, Venkataraman and Turaga (2016)
use a histogram of pairwise distances to summarize sliding window embeddings of
videos for activity recognition. Variants of this feature, often referred to as “D2
shape histograms” have been popular in the computer graphics community for de-
scribing 3D shapes (Osada et al. (2002), Mahmoudi and Sapiro (2009)), because,
like self-similarity matrices, they are blind to isometries, but unlike self-similarity
matrices, they require no alignment.

We now briefly summarize a few of the additional geometric features we use in
this work, which will be explained more in the background and as needed. In general,
we want features which are blind to isometries of the underlying space, but which,
unlike the previous two examples, also retain information about the time order of
the time-ordered point clouds in each window. To demonstrate these features, we
generate two synthetic TOPCs. The first is what as known as “Viviani’s figure 8”
(Figure 1.9), which is the intersection of the sphere x2 ` y2 ` z2 “ 4a2 and the
cylinder px´ aq2 ` y2 “ a2. In particular, it is parameterized as

~XV ptq “

»

–

ap1` cosptqq
a sinptq

2a sinpt{2q

fi

fl (1.13)

The second one is a 3-5 torus knot (Figure 1.8), which is parameterized by

XT3,5ptq “

»

–

r cosp3tq
r sinp3tq
´ sinp5tq

fi

fl (1.14)

We find variants of the Figure 8 are good examples for isometry blind time warp-
ing (Chapter 5), while the torus knot is similar to some patterns we see in sliding
window embeddings of harmonic periodic video sequences (Chapter 4), so they are
both worthy examples for motivating our feature choices.

As before, we compute the SSMs, which describe all of the geometry up to an
isometry, retaining the time order of the point cloud. We also compute diffusion
maps (Coifman and Lafon (2006)) and provide their associated SSMs. Diffusion

16

X Y

Z

Figure 1.8: Different geometric features describing a time-ordered point cloud
sampled from a 5-3 torus knot. The autotuned diffusion map reduces the impact
of the 5-part (smaller radius loop), effectively flattening the torus knot to be closer
to three loops. Unweighted Laplacian Eigenmaps actually completely un-knot the
knot and map it to one loop around a topological circle, and for an even smaller
κ, the curve would be a perfect geometric circle. Finally, the complicated geometry
causes some swapping between the Z2 and Z3 field coefficients in the 1D persistence
diagram. We exploit a similar phenomenon with paths on high dimensional flat tori
to detect harmonics frequencies in sliding window videos of vocal cords (Chapter 4).

17

X

Y

Z

Figure 1.9: Different geometric features describing a time-ordered point cloud
sampled from a Viviani Figure 8 (intersection of a sphere and cylinder, also type
of “Clelia curve” on the sphere). Curvature peaks at the two extremities of the
figure 8, which is apparent in the curve rendering. The first two eigenvectors of
the Laplacian Eigenmap are a planar Lissajous curve (the curve that results on an
oscilloscope when two harmonic signals are plotted against each other). The Z2 and
Z3 coefficient 1D persistence diagrams are the same in this case, and they both have
a point of multiplicity two (one for each loop in the figure 8).

18

maps are designed to preserve the intrinsic geometry of a point cloud, factoring out
unnecessary curvature in the ambient space. There are many parameters to tune
with these maps, but we provide a scheme to autotune them in Section 2.3.4 that
works reasonably well. Noting that diagonals in an SSM indicate repeating sections,
we notice the autotuned diffusion maps have effectively flattened the torus knot to
3 loops in Figure 1.8.

In addition to diffusion maps, we also use Laplacian Eigenmaps (Belkin and
Niyogi (2003)) on nearest neighbor graphs, which have a similar purpose. In Fig-
ure 1.9 and Figure 1.8, we compute the Laplacian Eigenmaps on the unweighted
graph obtained from the mutual k-nearest neighbor recurrence plot. We note that in
the torus knot example, this has the effect of unraveling the knot and mapping it to
one revolution around a loop in the plane. Because of this, these tools are particu-
larly useful when the time order is not known for periodic processes, and maps to the
circle need to be found in spite of complicated geometry. To complement diffusion
maps and Laplacian Eigenmaps, we also compute numerical estimates of velocity,
curvature, and torsion for the time-ordered point clouds.

Finally, we compute two types of features which lose the time order, but which can
still be useful. First, we compute the D2 histogram we mentioned at the beginning of
this section, for comparison. Secondly, and more importantly, we compute features
from topological data analysis (Edelsbrunner and Harer (2010)), known as “Rips
Filtrations,” which will be explained much more in the background. Roughly, they
describe the multiscale prominence of topological loops in the time-ordered point
clouds. As such, they are particularly apt for quantifying the periodicity of time
series, which give rise to topological loops in the sliding window embedding, as
demonstrated in Figure 1.5 (Chapter 4). Using coefficients in different fields can
also be used to find algebraic torsion, indicates if our loops bound non-orientable
surfaces. This is surprisingly useful for detecting if a periodic sliding window video
consists of a base frequency and an integer harmonic.

1.4 Isometry Blind Time Warping And Alignment

We have now outlined the majority of our pipeline, but there is one more issue that
needs to be addressed. In the cover songs application, we often need to match songs
which are at different tempos, and which potentially have missing or added beats
and sections. In addition, changes in instrumentation cause the sliding window point
clouds to move to different parts of the state space, even if the relative shapes are the
same. The latter issue can be addressed by sticking to features which are blind to
isometries, assuming the instrument changes are represented roughly by isometries
after normalization (an assumption which appears to hold up well in Chapter 3).
But for the former issue, we need alignment techniques which we have not yet dis-
cussed. Our solution for the cover songs is to apply off-the-shelf algorithms for gene
sequencing, such as Smith Waterman (Smith and Waterman (1981)), to match the

19

Figure 1.10: An example of what happens to self-similarity matrices after time
warping and rotation/translation. Since SSMs are naturally blind to isometries,
the rotation/translation has no effect, but the re-parameterization induces an image
warping on the SSMs, which we explore more in Chapter 5.

blocks via a cross-recurrence plot.
While working on this problem for cover songs, however, we were also motivated

to tackle the more general problem of isometry blind time alignment. This is a
difficult problem, since not only are the point clouds time warped version of each
other, but they are also not aligned spatially. It also has real applications in addition
to cover song identification. For example, one might want to synchronize two motion
capture gestures from different people performing the same action (Hsu et al. (2005)).
Each person is in a different part of the space (approximate isometry if they are a
similar body shape), and they likely perform the actions at a different rate (time
warping).

Figure 1.10 shows an example of rotating/translating/re-parameterizing a time-
ordered point cloud. SSMs are a good base representation, because they are naturally
blind to isometries, so we can focus on discovering an image warp between them to

20

uncover the underlying re-parameterization. The goal is to find an optimal corre-
spondence between the top TOPCs, which aligns the SSMs as optimally as possible
under some objective function. We will be more precise about this in Chapter 5, but
for now we formally define a correspondence:

Definition 9. Given two sets X and Y , a correspondence C between the two sets
is such that C Ă X ˆ Y and @x P XDy P y s.t. px, yq P C and @y P Y Dx P X s.t.
px, yq P C

In other words, a correspondence is a matching between two sets X and Y so
that each element in X is matched to at least one element in Y , and each element of
Y is matched to at least one element in X. Searching over all correspondences would
lead to a combinatorial explosion, and it was recently shown that finding the optimal
metric correspondence, known as the Gromov-Hausdorff Distance, is NP complete
(Agarwal et al. (2015)). However, if we impose constraints on valid correspondences,
particularly constraints which preserve a time order, then we are able to design
polynomial time algorithms which address this problem. We discuss these issues and
present our new algorithms in the mostly theoretical Chapter 5.

As a bonus, even if the time-ordered point clouds aren’t in the same metric space,
we would still like to compare them. This means our techniques could be potentially
used in cross-modal applications, such as aligning audio to video (Patterson et al.
(2002)). As we will show in Section 4.3, different modalities can have much different
geometries, even if they are describing the same underlying object. We use diffusion
maps as a preprocessing step to make cross-modal time-ordered point clouds closer
to being isometries across modalities.

1.5 Summary of Novel Contributions

Since this thesis straddles electrical engineering, math, and computer science, our
background is extensive. To help the reader, we created an annotated list of novel
contributions in this work below, by chapter

• Chapter 2: Background

Although this chapter is mostly explaining existing concepts in our own words
and with a consistent notation set, we did include a few small ideas of our own
that would not be a chapter unto themselves

– We demonstrate how Laplacian eigenmaps of sliding window embeddings
of periodic videos can be used to re-arrange the samples of the signal to
get a “slow motion” view of a single period, even if the sample rate is low
(Section 2.3.3)

– We create a novel user interface to synchronize PCA of feature summaries
on sliding window embeddings of audio, known as “Loop Ditty” (http:
//www.loopditty.net, Section 2.5.6)

21

http://www.loopditty.net
http://www.loopditty.net

• Chapter 3: Automatic Cover Song Identification

– We show how block-normalized MFCC features and SSMs of MFCC fea-
tures can be used in the cover songs problem, where MFCC features were
thought not to have any relevant information before

– We show how fusing MFCC and HPCP features with Similarity Network
Fusion improves cover song identification over either one alone.

– We show a novel low level metric fusion technique that significantly im-
proves classification performance if applied before local alignment, achiev-
ing state of the art in cover song identification.

– We show that our timbral features are more appropriate for assessing
music similarity than chroma features in the recent “Blurred Lines” music
copyright controversy (Section 3.4.2).

• Chapter 4: Sliding Window Videos

– We extend the delay reconstruction technique from 1D time series to video
as a concatenated delay series of all pixels (Section 4.1)

– We come up with theoretical models to explain the geometry that results
from these delay embeddings (Section 4.3). We prove that the geometry
lives on curved hypertori even for signals which oscillate with only one
frequency, and we show that harmonic signals often live on the boundary
of a Möbius strip.

– We provide techniques to reduce computation and cut down on drift with-
out requiring any video tracking (Section 4.4).

– We devise periodic, quasiperiodic, and harmonic scores of motion in videos
(Section 4.4.3). The quasiperiodicity score in particular has one of the first
known uses of persistent H2 in high dimensions for a practical purpose.

– We provide a way to autotune the window size of delay embeddings by
using techniques from audio processing on 1D surrogate signals derived
from the video using diffusion maps (Section 4.4.5).

– We show that our periodicity score of videos agrees well with aggregated
human rankings from the Amazon Mechanical Turk (Section 4.5)

– We show that our method can be used to quantify anomalies in high speed
videos of vibrating vocal cords without any motion tracking (Section 4.6)

• Chapter 5: Isometry Blind Time Warping

– We introduce a generalization of dynamic time warping which can syn-
chronize two time-ordered point clouds which have been spatially shifted
without aligning them spatially (Section 5.3). We show that this lower

22

bounds the 1-stress between the pairwise distances of both point clouds re-
stricted to warping paths, and we provide a GPU algorithm to parallelize
computation

– We show that critical points in self-similarity images are preserved un-
der re-parameterizations of the underlying time series, and we provide
interpretations of what different critical points say about geometry (Sec-
tion 5.4)

– We provide a persistence watershed algorithm to quantify critical points
in self-similarity images if time-ordered point clouds (Section 5.4.3), which
complements the rips complex approach that is normally used on point
clouds

23

2

Background

To keep this thesis self-contained, we have some background to cover from a diverse
array of topics, in addition to the over-arching signal to geometry pipeline given in
the previous chapter. One of the contributions of our work is making connections
between disparate fields, and we hope to highlight the ways in which non-traditional
tools from mathematics are useful when combined with traditional signal processing
techniques. Surprisingly, most of the topics below are connected to each other, and
we try to highlight the connections where applicable.

2.1 Topology / Topological Data Analysis

The word “topos” is the Ancient Greek word for “place.” So “topology” is the
“study of place.” Like its cousin geometry, topology is concerned with the study of
shape, but it is not concerned with metric properties such as length, area, angles,
etc. Rather, it is the study of how spaces are “connected,” and topological spaces are
thought of as equivalent under deformations that do not involve gluing or tearing.
For example, a line segment and a curve are topologically equivalent, but they are
not topologically equivalent to a loop. Common topological properties of interest
are connected components, loops/cycles (and their higher dimensional analogues
tunnels/voids), and orientability/twists. More information on topological spaces can
be found in Munkres (1975), but we briefly repeat some of the basics here at a high
level for engineers or computer scientists who may never have seen this before.

Topological spaces can be defined purely in terms of designated “open sets,” and
proximity in these spaces can be understood by studying these open set systems. In
particular,

Definition 10. Given a set X, a collection of subsets τ of X forms a topological
space pX, τq if the three following properties are satisfied

24

• H, X P τ

• A union of arbitrary collections of sets in τ is in τ , whether the union is finite,
countably infinite, uncountably infinite, etc.

• The intersection of any finite number of sets in τ is in τ

The sets in τ are known as “open sets” and the complement of any open set is known
as a “closed set.”

Though this definition may seem abstract, it turns out to be what’s needed to
capture all of the properties of interest in topology while also generalizing long-
standing notions of “open” and “closed” on the real line. Note that a topology can
be defined for any metric space as the union of balls in that metric space, and it can
be shown, for example, that unions of Lp balls in Rd give rise to the same topology,
regardless of p (though there are topologies which aren’t realizable this way). This
means that many important properties from metric spaces can be understood in a
much more general (and often simpler) framework. For example, continuity is purely
in terms of open sets:

Definition 11. Given two topological spaces X and Y , a map f between them is
continuous if for every open set V P Y , the inverse image f´1pV q is open in X

It can be shown that the “delta/epsilon” version of continuity between metric
functions is a special case of this definition with open balls defined in the domain
and range spaces, respectively.

The primary equivalence between topological spaces exists between spaces which
are homeomorphic. More precisely:

Definition 12. A homeomorphism h between two topological spaces X and Y is
a continuous, bijective map whose inverse is also continuous. Two spaces between
which a homeomorphism exists are said to be homeomorphic.

Intuitively, we must be able to find a map between two topological spaces that
doesn’t take things “too far” away from each other in the forward or backwards
direction, where proximity is understood in terms of the open sets at hand via the
definition of continuity above. Homeomorphisms precisely disallow the “gluing” and
“tearing” we seek to avoid. A common non-example of a homeomorphism is the
following function between the half open unit interval and the circle S1 (each with
“subspace topologies” inherited from a topology generated on R2 by intersections of
the segment and circle with arbitrary unions of open balls in R2):

f : t P r0, 1q Ñ S1, given byfptq “ pcosp2πtq, sinp2πtqq (2.1)

This function is certainly bijective, and it’s continuous in the forward direction,
but it fails continuity in the inverse direction at the point p1, 0q, because there is no

25

open set in S1 around p1, 0q that contains an open set mapped by f around t “ 0.
Intuitively, the map f brings points around t “ 0 very close to points around t “ 1 in
the range space (i.e. there are open sets containing their image in the range space),
where they were far in the domain space. This is a very precise way of saying it
would be necessary to glue the line segment at its endpoints to establish topological
equivalence with the circle. On the other hand, the map from the circle to the square
(in polar coordinates)

f : p1, θq P S1
Ñ pmaxp| cospθq|, | sinpθq|q, θq (2.2)

is, in fact, a homeomorphism between the circle and the square (it maps the circle
to its inscribed square diamond), so a circle is topologically equivalent to a square.
Note that this map is non-smooth (i.e. not a diffeomorphism) when considering the
metrics of the square and circle, but topology is blind to this.

If two spaces are homeomorphic, then those two spaces have all topological prop-
erties of interest in common, so in categorical language they are “isomorphisms in
the category of topological spaces.” It is important to note, however, that while
particular maps may fail to be homeomorphisms, it is in general quite difficult to
establish that no homeomorphisms exist between two spaces. For example, though
the example in Equation 2.1 is encouraging, it is not enough to prove that the circle
and the line segment are not topologically equivalent. In fact, the general problem of
homeomorphy is undecidable. Therefore, it is useful to develop topological invariants,
or quantities that can be computed over topological spaces which are preserved under
homeomorphisms. If these topological invariants are different between two different
topological spaces, then that is enough to prove that they are not homeomorphic.
We will be primarily concerned with a topological invariant known as homology in
this work, since it is one that can be computed with standard tools in linear algebra,
but there are many others (e.g. connectedness, compactness, homotopy).

We conclude this introduction to topology by noting that while it was long
thought to be merely an abstract branch of mathematics, it has found many interest-
ing applications in science and engineering, surprisingly demonstrating its practical
worth in recent times. The author’s personal introduction to the subject was via
computer graphics. For instance, sometimes it is desirable to find and fill in holes
in a surface that occurred during scanning (Zhao et al. (2007)), or surfaces with
nontrivial topology need to be cut so they can be effectively flattened to the plane
for texture mapping (Erickson and Whittlesey (2005)) 1. But there are many other
applications. In fact, the most recent nobel prize in physics (at the time of writing of
this thesis) was awarded for work that showed that topological invariants are useful
for detecting phase transitions in 2D collections of matter, a set of phenomena which
was extremely difficult to quantify with a traditional dynamical systems approach.

1 Some nice animations of algorithms for cutting and flattening surfaces can be found at https:

//www.cs.cmu.edu/~kmcrane/Projects/LoopsOnSurfaces/.

26

https://www.cs.cmu.edu/~kmcrane/Projects/LoopsOnSurfaces/
https://www.cs.cmu.edu/~kmcrane/Projects/LoopsOnSurfaces/

In our work, we show that a particular flavor of applied topology known as “topo-
logical data analysis” (Edelsbrunner et al. (2000), Edelsbrunner and Harer (2008)) is
well-suited to quantify high dimensional point clouds such as our time-ordered point
clouds, and which has found applications in signal analysis as a result. We now build
up some additional algebraic tools to establish a class of topological invariants.

2.1.1 Simplicial Homology

One way of describing a topological space in a purely combinatorial way is with a
simplicial complex:

Definition 13. An abstract simplicial complex is a finite set of sets K such that
σ P K and α Ă σ ùñ α P K. Each σ P K is known as a simplex, and each α Ă σ
is a face of σ (σ Ą α is known as a co-face of α). The dimension dpσq of a simplex
σ is the cardinality of σ minus one.

For example, tt1, 2, 3u, t1, 2u, t2, 3u, t1, 3u, t1u, t2u, t3uu is an abstract simplicial
complex, but tt1, 2u, t1uu is not (t2u P t1, 2u but t2u R K). The one-dimensional
simplices can be viewed as points, the two dimensional simplices as edges connecting
points, the 3 dimensional simplices as triangles connecting the edges, the 4 dimen-
sional simplices as tetrahedra, etc. The requirement that Y Ă X ùñ Y P S says
that if a simplex exists in the simplicial complex, then all of its faces must also be part
of the collection. Another way of defining a simplicial complexis as a “hypergraph”
which is closed under the face relation.

We can compute a topological invariant known as homology on simplicial com-
plexes, but we need a few more definitions first. All of the definitions can be found
in Hatcher (2002) and are re-iterated here briefly for convenience.

Definition 14. A p-chain c is a formal sum of p-simplices with coefficients in some
field F

c “
ÿ

i

aiσi (2.3)

where ai P F. The set of all p-chains over a set of p-simplices in a simplicial
complex K with the addition operator under the field Fforms a group denoted CppKq

Often in practice, the field is taken to be Z2, or the binary field, in which addition
is analogous to the XOR operation (1 + 1 = 0), but in Chapter 4 we show some
utility for using other fields, such as Z3 (briefly, Z2 is not a strong enough invariant
to detect “twists”).

Now define the boundary operator Bp of a p-simplex, which is a map from a p
simplex to a pp´ 1q-chain under the same field

27

e1

e2e3

v1
v2

v3

e1

e3

v1
v2

v3

e2e3

v1
v2

v3

e4

v1

e5

e1

e6

e2e3

v1
v2

v3

e4

v1

e5

e1

e6

Figure 2.1: Examples of the 1-boundary resulting from removing an edge from
a triangle (top, boundary shown with red dots), and an example of a 2-boundary
resulting from removing a triangle from a tetrahedron (bottom, boundary shown
with red line segments)

Definition 15. Given a p-simplex σ “ tu0, u1, ..., upu

Bpσ “
p`1
ÿ

j“0

p´1qjtu0, u1, ..., ûj, ..., upu (2.4)

where ûj indicates the omission of the vertex uj to form a pp´ 1q-simplex.

Note that for Z2 coefficients, the boundary operator is simply

Bpσ “
p`1
ÿ

j“0

tu0, u1, ..., ûj, ..., upu (2.5)

The boundary operator extends linearly to all simplices in a p-chain c, so

Bpc “
ÿ

i

aiBpσi (2.6)

The group of pp´ 1q-chains in the image of the boundary operator for a group of
p-chains in a simplicial complex K is itself a group, which is a subgroup of the group
of pp´ 1q chains in C. The notation for the group of p chains which result from the
boundary operator of pp` 1q-chains is denoted as BppKq Ă CppKq.

This definition may seem abstract, but it expresses a concept that is very intuitive,
especially with binary coefficients as the field, which we will use to explain the
examples in Figure 2.1. On the top of Figure 2.1, 3 1-simplices are connected to

28

each other by edges te1 “ tv1, v2u, e2 “ tv2, v3u, e3 “ tv1, v3uu. Since every vertex
shows up in exactly two edges, the boundary operator on this chain of edges gives
zero (1+1 = 0 with binary coefficients)

B1pe1`e2`e3q “ pv1`v2q`pv2`v3q`pv1`v3q “ pv1`v1q`pv2`v2q`pv3`v3q “ 0
(2.7)

However, when edge e2 is removed, a boundary is now present, as the vertices v1
and v2 show up only once after the boundary map

B1pe1` e3q “ pv1` v2q ` pv1` v3q “ pv1` v1q ` v2` v3 “ v2` v3 (2.8)

On the bottom of Figure 2.1, a similar example is shown with a 2-boundary.
On the bottom left, 6 edges of the tetrahedron are connected to each other by 4
triangles: tT1 “ te3, e6, e5u, T2 “ te2, e4, e6u, T3 “ te1, e2, e3u, T4 “ te1, e5, e4uu
In this case, applying the 2-boundary operator B2 on the chain formed by these four
triangles yields zero, because every edge is part of exactly two triangles. However,
once T2, the triangle on the right, is removed, three edges show up exactly once in
the new chain, and those three edges survive the boundary operator.

Now the language exists for describing what is meant by a cycle

Definition 16. A p-chain c whose boundary is the zero element is called a p-cycle.
The group of all p-cycles in a simplicial complex K is denoted as ZppKq, and is a
subgroup of CppKq.

By this definition, the three edges in the top left of Figure 2.1 form a 1-cycle,
and the four triangles in the bottom right of Figure 2.1 form a 2-cycle. In other
words, there are no “holes” at that dimension where a boundary could be nonzero,
so everything is closed. A 1-cycle is often referred to as simply a “cycle,” and a 2-cycle
is referred to as a “void.” Now note a very important theorem relating boundaries
to cycles.

Lemma 1. The fundamental lemma of of homology (Edelsbrunner and Harer (2010))
Given a pp` 1q-chain c in a simplicial complex K,

BpBp`1c “ 0 (2.9)

This implies BppKq Ă Zppkq

In other words, every boundary of a pp` 1q-simplex is a p-cycle, so applying the
boundary operator twice sends everything to zero. This makes sequences of p-chains
with boundary operators between them a special case of a chain complex. One can
use this property to quantify exactly how many holes of a particular dimension exist
in a simplicial complex K. The idea is that a p-cycle will count as a hole as long as
it is not the boundary of some pp ` 1q simplex in K. Intuitively, the p-boundary in
a simplicial complex K are the p-simplices in K that aren’t “filled in” by pp ` 1q-
simplices. To express this mathematically, the notion of a homology group is used

29

T1
T2

T3T4

T5

T6 T7

Figure 2.2: An example of a simplicial complex with two homologous loops (i.e. the
red path is expressible as the blue path plus only boundaries of triangles). Triangles
which exist in the complex are shaded in pink, and the two different paths are drawn
in red and blue. The blue cycle B can be turned in the red cycle R by adding only
boundaries: R “ B ` BpT1 ` T2 ` T3q ´ BpT4 ` T5 ` T6q.

Definition 17. Given a simplicial complex, the pth homology group HppKq is

HppKq “ ZppKq{BppKq (2.10)

or the group of p-cycles modulo the group of p-boundaries. The rank of the group
Hk is the kth Betti number βk.

Thus, in order for a k-cycle to count as a hole contributing to βk, it must not be
a linear combination of the boundaries of pk ` 1q-simplices under the chosen field.
Therefore, if βk “ x; there are x linearly independent k-cycles which cannot be
written as a linear combination of pk ` 1q-boundaries. The set of cycles that are
equal under the equivalence relation “equality mod the boundary BppKq” are part
of an equivalence class called a homology class, so there are x k-homology classes
if βk “ x. This elegant framework for classifying topological spaces is known as
homology.

One attractive property that homology has that many engineering approaches
lack is a certain “immunity to arbitrary choices.” For instance, a computer scientist’s
first instinct when looking for “loops” in a simplicial complex might be to run some
kind of graph traversal algorithm. But there are many loops which are homologous,
i.e. part of the same homology class. Figure 2.2 shows an example of two different
loops which could represent the same homology class. By creating these equivalence
classes and simply counting the number of classes, the basis for the homology classes
doesn’t matter at all. In addition, it turns out that the choice of simplices used to
represent a topological space does not affect the homology either. This should serve
as a relief to people in graphics, for example, since there are many ways to mesh
(triangulate) the same point cloud which intuitively do not change the topology.
More details can be found in Hatcher (2002).

Unfortunately, the independence of basis can be a double-edged sword when one
wants to actually find representative cycles of a particular homology class, or to
“localize” the homology (i.e. visualize where the cycles actually reside in a simplicial
complex). Even when attempting to constrain the problem to cycles of a minimum

30

length, the problem is NP-hard to approximate within even a constant factor in
general with Z2 coefficients (Chen and Freedman (2011)). There is hope for orientable
complexes when lifting to Z coefficients, however (Dey et al. (2011)).

Computing Betti numbers

To compute Betti numbers in practice, it is useful to fix a basis for the simplices
and explicitly write out the boundary operators from p chains to pp ´ 1q chains as
matrices with coordinates. A sparse matrix reduction algorithm can then be used to
find the rank of the image and kernel of the boundary matrix, which are needed to
compute the Betti numbers. Below, a matrix is defined where the basis is fixed to
be each p simplex (we abuse notation slightly by using the same symbol B for this
matrix as we do for the abstract operator without a basis)

Definition 18. Given a simplicial complex K with N p-simplices tσpj u
N
j“1 and M

pp´1q-simplices tσp´1
i uMi“1, then the boundary matrix Bp is an MˆN matrix defined

as follows

Bppi, jq “

"

´1k σp´1
i “ tvj1 , vj2 , ..., v̂jk , ..., vjp`1u Ă σpj “ tvj1 , vj2 , ..., vjp`1u

0 otherwise

*

(2.11)
where the ordering of the vertices in σj is made in accordance with some global

order of the vertices, so that Bppi, jq is consistent with Definition 15

Hence, adding a pp ´ 1q simplex to the complex adds a row to Bp, and adding a
p-simplex adds a column. Note that these matrices are extremely sparse, since each
p simplex has only pp ` 1q co-dimension 1 faces, so the boundary matrix for a sim-
plicial complex with N p-simplices needs Npp` 1q storage. Therefore, sparse matrix
reduction algorithms can be used to significantly reduce storage and computation
time.

Given these matrices, all Betti numbers can be computed as

βk “ rankpkernelpBkqq ´ rankpimagepBk`1qq (2.12)

2.1.2 Vietoris-Rips Filtrations And Persistent Homology

Vietoris-Rips Complexes, Filtrations, And Persistence

Like everything in our toolset, we would like topology to be in the service of analyzing
time-ordered point clouds. However, the topology of a point cloud is quite dull. A
point cloud with N points consists of N connected components (β0 “ N), and
otherwise trivial topology (βk “ 0, k ą 0). However, we can think of point clouds
as sampled from unions of manifolds/stratified spaces, which themselves can have
interesting topology. For example, Figure 2.3 shows a point cloud which appears

31

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Original Point Cloud

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5
Time of Birth

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

4.5

T
im

e
 o

f
D

e
a
th

1

2

1D Persistence Diagram

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Class 1 Birth (d = 0.774)

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Class 2 Birth (d = 1.8)

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Class 1 Death (d = 1.84)

3 2 1 0 1 2 3 4 5
3

2

1

0

1

2

3

4

5
Class 2 Death (d = 3.55)

Figure 2.3: The evolution of simplicial complexes built on a point cloud as the
Vietoris-Rips Filtration progresses, and the 1D persistence diagram summarizing
the evolution of 1 dimensional homology during this progression. Connected edges
are drawn in blue, and filled in triangles are drawn in green.

to have come from two different loops. But how do we quantify this, not actually
knowing the underlying manifolds? The key idea is to grow metric balls around each
point, and to examine the homology of the resulting space resulting of the union of
the balls. Since a ball is a metric concept, this ends up being a nice combination of
geometry and topology, or “multiscale topology.”

To get started, we define something called a Čech Complex

Definition 19. Given a point cloud X in a metric space pM, dq, the Čech Complex
is the following abstract simplicial complex:

CXprq “ tσ Ă X|
č

xPσ

Brpxq ‰ Hu (2.13)

In other words, if a simplex is covered by a union of balls, then add it to the
simplicial complex. This simplicial complex is known as a nerve of the topological
space obtained from the union of balls of radius r around each x P X, and by

32

Figure 2.4: On the top, a diagram showing which identifications to make to form
a torus. On the bottom, 500 points are sampled on the torus. Two 1 cycles and one
2 cycle are evident.

something called the “Nerve Lemma” (Steenrod and Eilenberg (1952)) it turns out
to be “homotopy equivalent” to the topological space. Homotopy equivalence is a
stronger invariant than homology, so the homology of the Čech Complex captures
the homology of this ball union space.

One drawback of Čech Complexes is that it can be difficult to compute them
in high dimensions, because checking if a simplex is covered amounts to checking
if there is a ball enclosing the points that make it up, and computing minimum
enclosing balls is expensive in high dimensions (and needs to be done for all possible
simplices!). A substantially simpler complex is what’s known as the Vietoris-Rips
Complex

Definition 20. Given a point cloud X in a metric space pM, dq, the Vietoris-Rips
Complex is the following abstract simplicial complex:

VrpXq “ tσ Ă X|dpx1, x2q ď r,@pxi, xjq P σu (2.14)

In other words, a simplex exists in VXprq if all of its edges have length ď r.
Note that the Vietoris-Rips Complex is not equivalent to the Čech Complex. In

fact, CXprq Ă VXprq, which follows readily from the definitions (Figure 2.6 shows an
example). Another way of saying this is that the Vietoris-Rips Complex is an L8

33

Figure 2.5: On the top, a diagram showing which identifications to make to form
a Klein bottle (same as the torus, except one of the identifications has a twist). On
the bottom, 500 points are sampled on the Klein bottle, and it is projected to 3D
with PCA. When using Z2 coefficients, the diagram looks the same as a torus, but
with Z3 coefficients, it changes.

Rips Complex Cech Complex

Figure 2.6: An example of a Čech Complex and a Vietoris-Rips Complex on the
same point cloud. There is one triangle that Rips adds here which is not actually
covered by balls. The uncovered portion is highlighted in yellow in the Čech Complex.

34

version of the Čech Complex. It is necessarily, therefore, an approximation to the
geometry/topology combination we’re after, but it is a good tool in practice, since it
only requires knowledge of edge lengths (making it usable in general discrete metric
spaces even when it’s impossible to compute enclosing balls). The Vietoris-Rips
Complex is also a special case of a flag complex, which is a simplicial complex where
if a clique exists in the 1-skeleton of that complex, then the corresponding simplex
exists. Because of this, in addition to avoiding ball enclosing computations, simpler
data structures are possible for storing higher simplices, since only the 1-skeleton
(graph) is needed (Boissonnat et al. (2016)).

Both Čech Complexes and Vietoris-Rips Complexes have the property that the
complex at a smaller scale is contained in the complex at a larger scale. This makes
it possible to define what’s known as a “filtration”

Definition 21. A given sequence of simplicial complexes S1, S2, ...SN is a filtration
if S1 “ H and Si Ă Sj, @i ă j

To create a Vietoris-Rips Filtration, for example, simply come up with the se-
quence VXp0q Ă VXpr1q Ă ... Ă VXprNq, where ri is the length of the ith longest edge
and N is the total number edges to be added. Note that the Vietoris-Rips Complex
only changes when an edge is added, so we can ignore scales between edge lengths.

We are finally ready to define persistent homology. Given a filtration S1, S2, ...SN ,
define all of the inclusion maps between Si and Si`1. This induces maps at the ho-
mology level, and we can study the kernel and co-kernel of these maps. In particular,
if a p simplex is added at time i which increases the kernel of Bp, then a new linearly
independent p-homology class forms. This is called a birth event, and this type of
p-simplex is referred to as a positive (+) p-simplex. If, on the other hand, a p simplex
is added which increases the image of Bp, then a p´1 homology class becomes homol-
ogous to zero. This is called a death event, and this type of p-simplex is referred to as
a negative (-) p-simplex. We can create an object to describe these events known as
a persistence diagram. For each homology class that exists at some time, we record
the time at which it was born, and the time at which it died. The difference between
these two values is known as the persistence. This yields a multiset of points in the
plane, which can be plotted with birth on the x-axis and death on the y-axis. For
technical reasons, we also include the diagonal line with infinite multiplicity, which
represents all classes that born as soon as they die.

Figure 2.3 shows an example 1D persistence diagram of a Vietoris-Rips Filtration
on a point cloud in R2. The Vietoris-Rips Complex is shown at every stage of the
algorithm where either a birth or death event happens. There are two persistence
dots in the image; one corresponding to the smaller loop and one corresponding to
the larger loop. This makes more precise the notion that there are two loops in the
point cloud at different scales. Figure 2.4 shows the 1D and 2D persistence diagrams
of a sampled torus. Here, there are two dots with large persistence that stand out,
implying that there are two independent 1-cycles over a large range of distances in
the rips filtration, each corresponding to a principal circle of the torus. There is also

35

a 2D cycle that rises far above the diagonal (birth = death), which implies that there
is a 2D cycle, or a “void,” that exists over many scales. This is a pretty convincing
signature of a torus, which is made of the product of two circles and which has β1 “ 2
and β2 “ 1. This is a signature which we will search for in Chapter 4.

Figure 2.5, on the other hand, shows the persistence diagram for a Klein bottle
which has been sampled in R4. Using Z2 homology, this appears the same as the
torus. However, the Klein bottle does not bound a void; there is no inside or outside
(β2 “ 0). As it turns out, with Z3 homology, it should have β1 “ 1, β2 = 0, and the
difference is visible in the third most persistence diagram of Figure 2.5.

The Persistence Algorithm

The homology computation given in Section 2.1.1 only works for simplicial complexes
which are fixed. We now modify homology computation so that it fits into the
persistence framework, where simplices are added incrementally and the ranks of the
images and kernels of all of the boundary matrices can change. When a p simplex σ
is added to a simplicial complex K, it adds a column to Bp and a row to Bp`1,p. The
added row is all zeros because of the filtration rule that the pp`1q co-faces of σ have
not been added yet, so the rank of the image and kernel of Bp`1,p remain unchanged.
However, adding the column to Bp either increases the rank of the kernel of Bp if the
column is a linear combination of the previous columns, or it increases the rank of
the image of Bp if the column is linearly independent of the previous columns. This
leads to the definition positive (+) and negative (+) p-simplices:

Definition 22. When a p-simplex is added to a simplicial complex K and a column
is added to Bp

• If the column is a linear combination of previous columns, a birth of a p-cycle
happens, since the rank of the kernel of Bp is increased. Then by Equation 2.12,
βk “ βk ` 1. Thus, this is a positive p-simplex.

• If the column is linearly independent of previous columns, a death of a pp ´
1q cycle happens, since the rank of the image of Bp is increased. Then by
Equation 2.12, βk´1 “ βk´1 ´ 1. Thus, this is a negative (-) p-simplex

To complete the modifications for the persistence algorithm, rather than choosing
an arbitrary indexing set, the simplices can be ordered by their filtration function
values, and the births and death times can be determined as biproducts of reducing
the entire simplicial complex (an N -simplex over a set of N points in the case of
a point cloud with a rips filtration). Algorithm 1 provides the details. Most of
the details are very similar to the case of a static simplicial complex. When a zero
column is encountered in Line 16 for a k-simplex, the kernel of Bk is increasing by
one, so a k-cycle must be born. The most subtle new detail is on Line 25, when
the rank of Bk increases by one, and a pk ´ 1q-class is killed. Since the columns are

36

Algorithm 1 Algorithm for Persistence Reduction and Generators

1: procedure ComputePersistenceDgmsReduce(K, f) Ź Input is a
simplicial complexand a valid filtration f

2: N Ð number of simplices in K
3: Sort simplices by their order of occurrence in the filtration
4: Initialize an N ˆN matrix M of all zeros Ź Full boundary matrix
5: Initialize an N ˆN identity matrix K Ź Matrix to be co-reduced
6: βk Ð 0 for all k Ź Initialize all Betti numbers to zero
7: Ik Ð tu Ź List of maps for storing transient k-homology classes for all k
8: Gk Ð tu Ź List for storing generators of homologyclasses
9: σi Ð the ith simplex added in the filtration, for all i “ 1 : N

10: for i “ 1 : N do Ź Initialize the sparse matrix
11: for σj P σi, |σj| “ |σi| ´ 1 do
12: Mpj, iq Ð 1 Ź Add a 1 to the column i of the matrix for each

co-dimension one face of σi, at the jth row
13: end for
14: end for
15: for i “ 1 : N do Ź Reduce the sparse matrix
16: if Mp:, iq ““ 0 then Ź If this is a column of all zeros
17: k Ð |σi|
18: βk Ð βk ` 1
19: Iktσiu “NULL Ź A k-cycle is born at time fpσiq
20: Gktσiu “ tσj;Kpj, iq ““ 1u Ź Read off generator from co-reduced

matrix
21: else
22: k Ð |σi|
23: βk´1 Ð βk´1 ´ 1
24: j = lowpMp:, iqq Ź Index of lowest nonzero element in column i of M
25: Ik´1tσju “ σi Ź At time fpσiq, σi kills the class born at fpσjq
26: for k “ i` 1 : N do
27: if Mpj, kq ““ 1 then
28: Mp:, kq Ð Mp:, kq + Mp:, iq
29: Kp:, kq Ð Kp:, kq + Kp:, iq
30: end if
31: end for
32: end if
33: end for
34: end procedure

37

Figure 2.7: L2 Wasserstein distance between persistence diagrams of a circle and
a noisy circle

sorted in order of filtration time, the lowest element in that column, which is not
zero (since it increases the rank), must have given birth to the pk ´ 1q-class that
is being killed. Thus, it is possible to pair the death times with the correct birth
times in the filtration. Also, when Z2 coefficients are used, it is possible to store the
sparse matrices so that each column is a list. With this representation, Line 29 can
be implemented as an XOR list merge. Finally, at the end, the information needed
to construct the persistence diagrams can be read off of the list of maps defined on
Line 7.

2.1.3 Persistence Diagram Comparison And Stability

With the definition and examples of persistence diagrams now in hand, it is natural
to ask how robust they are to noise and inaccuracies in the point cloud and metric.
Something known as the Bottleneck Distance can be used to quantify this. Below
are a few definitions which build up to an explanation of bottleneck distance.

Definition 23. Given two persistence diagrams PS1 and PS2 on filtrations S1 and
S2, respectively, the p-Wasserstein Distance dppPS1 , PS2q is defined as

dpW pPS1 , PS2q “ inf
γPΓ
p

|γ|
ÿ

i“1

||PS1piq, γpPS1piqq||
p
q
1
p (2.15)

where Γ is the set of all perfect bipartite matchings (1 to 1 correspondences between
points in PS1piq to those in PS2piq), where all diagonal points are included in each
with infinite multiplicity.

If p “ 8, this is known as the bottleneck distance between two persistence dia-
gram.

The bottleneck distance has been shown to be Lipschitz-continuous with respect
to the Hausdorff distance (minimum maximum distance under a correspondence)

38

between two point sets by Cohen-Steiner et al. (2007), so the bottleneck distance is
stable with respect to Hausdorff noise2. The same is not true of the p-Wasserstein
distance in general. For instance, an arbitrarily large set of points close to the diag-
onal can, in aggregate, blow up the distance. However, Cohen-Steiner et al. (2010)
show stability of the p-Wasserstein distance for filtrations which come from Lipschitz
functions, so it is still a useful similarity measure between persistence diagrams for
a large class of data in practice. It also incorporates more information than simply
the max distance, which can be more discerning.

To compute the Wasserstein distance, perform a minimum weight bipartite match-
ing γ : PS1 Ñ PS2 between the points of the two diagrams PS1 and PS2 . This can be
performed in OpN3q time with the Hungarian algorithm, where N is the number of
points in the persistence diagram. The diagonal is included with infinite multiplicity,
so if a point in |PS1 | does not get matched to a point in |PS2 | or vice versa, then it
can be matched to the diagonal. This takes care of small persistence points which
arise close to the diagonal when noise is added. For the bottleneck distance, there ex-
ists an OpN1.5 logpNqq algorithm for computing the optimal matching (Kerber et al.
(2016)).

Figure 2.7 shows an example point cloud and the minimum-weight bipartite
matching between points for d2

W pPS1 , PS2q. Notice how noisy points are matched
to the diagonal.

Note that there has been a lot of recent work on other ways to match persistence
diagrams that are stable. For instance, Bubenik (2015) creates “persistence land-
scapes,” which turns a diagram into a set of triangles for each point whose areas
are proportional to the square of persistence of that point. Reininghaus et al. (2015)
create a multiscale kernel using heat diffusion around each point in the diagram. And
Carrière et al. (2015) use the D2 histogram of points in a diagram. When we need
to compare diagrams in Section 5.4.3, however, we simply stick to the Wasserstein
distance.

2.1.4 Computational Complexity

It is often computationally infeasible to apply the naive persistence algorithm (Al-
gorithm 1) to analyze point clouds. To see this, assume that one wants to compute
Betti numbers up to βk for a Rips filtration over a point cloud with N points. To
compute βk, all pk ` 1q-simplices need to be included. There are

`

N
p`1

˘

“ OpN pp`iqq

possible p-simplices to be added for each for each p, so the total number of simplices
that would need to be considered is OpNk`2q, meaning the full boundary matrix
would have OpNk`2q columns. Furthermore, computing Betti numbers requires de-
termining rank, which calls for a matrix reduction that is Opn3q for n columns. This
compounds the complexity even further to OppNk`2q3q “ OpN3k`6q. For β1, this

2 Though it has been proved that the diagrams are stable to Hausdorff noise under the bottleneck
distance, it should be noted that the diagrams are not in general robust to other types of additive
noise, such as Gaussian or uniformly distributed random noise.

39

requires a worst case complexity of OpN9q, and for β2, the complexity is OpN12q.
Since we need to compute persistent β2 in Chapter 4 on point clouds with 600 points,
this bound needs to be improved somehow.

In low dimensions, alpha complexes, or simplicial complexes that are subcom-
plexes of the Delaunay triangulation, can be used to substantially reduce the num-
ber of simplices that need to be checked compared to a Čech Complex (Edelsbrunner
et al. (1983), Edelsbrunner (1993)). There has also been some recent work using cover
trees (Beygelzimer et al. (2006)) to approximate Vietoris-Rips Filtrations (Sheehy
(2013), Cavanna et al. (2015)). In this work, we use recent fast code developed by
Ulrich Bauer at TUM, known as “Ripser” (Bauer (2017)). This code can compute
persistent H2 for point clouds of 600 points in a matter of seconds, which sets it
apart from other currently available techniques. It can also handle field coefficients
other than Z2, which we exploit in Section 4.3.3.

2.2 Nonlinear Time Series Analysis / Dynamical Systems

We draw a lot of inspiration from the dynamical systems community in our work.
At times, it will be helpful to take an explicitly dynamical systems view, particularly
in our chapter on sliding window videos (Chapter 4). Because of this, we find it
necessary to review some basic tools from this field here. We also take this as
an opportunity to highlight how topological data analysis is useful for describing
dynamical systems, which we will show through various examples in this section.
This combination forms the basis for a powerful toolset in this thesis.

2.2.1 Takens’ Delay Theorem

The main theorem we will make use of is known as Takens’ Theorem (Takens (1981)),
which is tied to discrete-time dynamical systems

Definition 24. A discrete-time dynamical system is a time-evolving process which
is identified with a state space on a d-dimensional Riemannian manifold M with a
state transition self-map on M, ψ :MÑM, which is smooth.

The state transition map ψ describes how the dynamical system progresses from
its present state into the future, and so ψ is often referred to as the dynamics of the
system. Since ψ is a smooth function determined a priori, a discrete-time dynam-
ical system is inherently deterministic, though it can still yield chaotic trajectories
through M (i.e trajectories which are high sensitivity to the initial state, which
means they are impossible to predict long term with finite precision measurements).

Now we can state Takens’ Delay Theorem

Theorem 2. Given the two following objects:

• A discrete-time dynamical system on a manifold M with a state transition
function ψ

40

• A generic twice differentiable scalar function f P C2pM,Rq

then it is a generic property that the map MÑ R2m`1 given by

Spxq “

»

—

—

—

–

fpxq
fpψpxqq

...
fpψ2dpxqq

fi

ffi

ffi

ffi

fl

(2.16)

where ψkpxq represents composition with ψ k times, is an embedding of M (i.e.
there exists a diffeomorphism between M and the image of S). S is known as the
delay reconstruction or delay embedding of f .

Note the similarity of this framework to the sliding window embedding established
in Equation 1.1. In fact, this is theoretical justification why one cares about using
a sliding window; if one wants to truly describe the state of a system geometrically
without ambiguity (i.e. the injectivity of the diffeomorphism), then it is possible that
up to 2d`1 lags are needed. We will see some examples of this in Chapter 4. Also note
that this theorem is basically a corollary of the Whitney embedding theorem (Adachi
(2012)), which states that any d-dimensional Riemannian manifold can be embedded
into R2d`1 (e.g. a knot, which is a 1-manifold, can be embedded in R3). Though
Takens’ Theorem shows that, rather than needing 2d ` 1 independent dimensions,
it is enough to use a single scalar function to generate them all under the right
conditions. Finally, a sliding window embedding is often referred to as a “phase
space reconstruction” in the dynamical systems community. A interesting analysis
of the historical development of phase space can be found in Nolte (2010). Basically,
the name “phase space” is not suggestive of the generality of the above framework,
and it took some retrospective analysis to figure out where that nomenclature started.

To see Takens’ Theorem in action, it is useful to reverse engineer the theorem to
get a few examples. First, let’s suppose that we start with a state space which is the
two sphere S2. Let the sphere be parameterized in spherical coordinates by pθ, φq,
so that

spθ, φq “ pcospθq cospφq, sinpθq cospφq, sinpφqq (2.17)

Define the following state transition map

ψ∆θ,∆φpθ, φq “

"

ppθ `∆θq 2π, φ`∆φq, ´π{2 ă φ` δφ ă π{2
pθ, φq, otherwise

*

(2.18)

and define an observation function

fpθ, φq “ u ¨ spθ, φq (2.19)

41

Figure 2.8: An example of reverse engineering Taken’s delay theorem to derive a
time series whose sliding window embedding lives on the sphere S2. In this case, the
observation function is the angle between the state vector on the sphere and some
random vector u which isn’t on the equator or poles. As suggested by PCA and
confirmed by 2D persistence, this does indeed lie on a sphere

where u P R3 “ pa, b, cq is some random unit vector so that a, b, c ‰ 0. In other
words, the observation function is the cosine of the angle a state variable on the
sphere makes with some vector u which isn’t on the north or south pole or on the
equator. Ruling out the poles and the equator keeps the function generic, or in this
case that it observes all degrees of freedom of the state variable. Equation 2.19 can
be rewritten as

Figure 2.9: An example of reverse engineering Taken’s delay theorem to derive a
time series whose sliding window embedding lives on the sphere S2. In this case,
the observation function is the geodesic distance of the state vector on the sphere to
some random vector u which isn’t on the equator or poles. Like Figure 2.8, this lies
on a topological sphere which is diffeomorphic to the geometric sphere, though the
embedding has changed due to the use of a different observation function.

42

fpθ, φq “ pa cospθq ` b sinpθqq cospφq ` c sinpφq (2.20)

“ a1 cospθ ´ b1q cospφq ` c sinpφq (2.21)

where a1 “
?
a2 ` b2 and b1 “ tan´1pb{aq. Now given a period length T and

a frequency f , and taking the limit as ∆θ and ∆φ approach zero, we can write a
continuous time series of the form

fptq “ A cosp2πft´ φq cos pπpt{T ´ 1{2qq `B sin pπpt{T ´ 1{2qq (2.22)

for some constants A, B, and φ. In other words, the signal is a phase-shifted
cosine which is amplitude modulated by a cosine over the interval r´π{2, π{2s, which
starts off at amplitude 0, is amplitude 1 halfway through, and is amplitude 0 at the
end, which is added to a function which increases monotonically. As can be seen in
Figure 2.8, the delay reconstruction of this signal does indeed lie on the sphere. If we
tweak the observation function to instead measure geodesic distance from u (which
is proportional to the angle with u), we still get a signal which lies on a space that
is diffeomorphic to the sphere, but it has been slightly warped (Figure 2.9).

Now we will look at examples of dynamics which live on the torus, which call for
their own section.

2.2.2 Torus State Spaces: Periodicity And Quasiperiodicity

Dynamics on the T ´ torus have a very important role in describing periodic pro-
cesses. To show this, as before, we will reverse engineer Takens’ Delay Theorem. This
will end up yielding a geometric alternative to Fourier analysis of periodic signals
which is quite useful. We will show another way to derive all of this in Section 4.1.2
which may be more intuitive for engineers, and which will also allow us to show the
similarities between 1D time series and video for periodic processes, but for now we
follow the same blueprint we outlined for dynamical systems on the sphere. For con-
venience, start with a state space of the flat torus (also known as a “Clifford Torus”)
in R4, which is parameterized by

T pθ, φq “ pA cospθq, A sinpθq, B cospφq, B sinpφqq (2.23)

This is a 2-torus which has no curvature and which topologically results from
identifying the two pairs of opposite sides of a rectangle. It cannot be metrically
realized in R3, although it is diffeomorphic to the standard 2-torus in R3. Now
create the observation function similarly to Equation 2.19. That is take the dot
product of some random vector u “ pa, b, c, dq, so that pa, bq, pc, dq ‰ p0, 0q (this is
like saying the scalar function must witness both principal circles of the torus)

43

fpθ, φq “ u ¨ T pθ, φq (2.24)

“ A1 cospθ ´ φ1q `B
1 cospφ´ φ2q (2.25)

where A1 “ A
?
a2 ` b2, φ1 “ tan´1pb{aq, B1 “ B

?
c2 ` d2, φ2 “ tan´1pd{cq. The

dynamics can be defined as

ψ∆θ,∆φpθ, φq “ ppθ `∆θq mod 2π, pφ`∆φq mod 2πq (2.26)

As before, we can take the limit to continuous dynamics and see that a continuous
function whose sliding window embedding lives on the torus is of the form

fptq “ A cosp2πf1t´ φ1q `B cosp2πf2t´ φ2q (2.27)

This can be generalized to the T-torus as

fptq “
T
ÿ

t“1

At cosp2πfit´ φtq (2.28)

Since there are T degrees of freedom in a T-torus, Takens’ Delay Theorem would
suggest that we potentially need the upper bound of 2T ` 1 lags in the delay em-
bedding to properly reconstruct the state space. In fact, as shown by Perea and
Harer (2015), we only need 2T . Intuitively, there is a dimension required to describe
both amplitude and phase of each sinusoid. More rigorously, we can write the si-
nusoids as complex exponentials and show that the N ˆ 2k matrix containing all of
the sliding windows contains an upper 2T ˆ 2T Vandermonde matrix, whose rank
is 2k (Perea (2016)). This is equivalent to the statement that each sinusoid adds an
elliptic trajectory which lines on a linearly independent plane.

Though signals which are sums of sinuosids all live on a torus state space, the
dynamics can induce very different trajectories. For example, Figure 2.10 shows the
sliding window embedding for the following harmonic 1D signal

fhptq “ cos
´π

5
t
¯

` cos
´ π

15
t
¯

(2.29)

which is the sum of two sinusoids with periods 10 and 30. Though fhptq lives in
4D on the flat 2-torus (we are viewing a 2D projection in Figure 2.10), the embedding
traces and re-traces a topological loop, and the traced loop has intrinsic dimension
of only 1. Figure 2.10, on the other hand, shows the sliding window embedding for
the following quasiperiodic signal

fqptq “ cos
´π

5
t
¯

` cos

ˆ

1

5
t

˙

(2.30)

which is the sum of two sinusoids with periods 10 and 10π. Although the two
periods in fqptq are similar to those in fhptq, geometry of the embedding is quite

44

Figure 2.10: Sliding window embedding of a harmonic signal with a ratio of 3
between the two frequencies. Colors in the signal correspond to colors of the points
in the PCA sliding window. The embedding forms a topological loop, as reflected
by the single strong 1D persistent dot

Figure 2.11: Sliding window embedding of a synthetic quasiperiodic signal with a
ratio of π between the two frequencies. Colors in the signal correspond to colors of
the points in the PCA sliding window. The embedding fills out the surface of the
2-torus, as reflected by the two strong 1D persistent dots and the single strongly
persistent 2D dot.

different. The points actually fill out the entire surface of the 2-torus, since no
window is ever exactly the same as any other window for all t P r0,8q. This is an
application of Kronecker’s theorem (Kronecker (1884)). The difference in geometry is
stark compared to the difference between traditional power spectral densities of these
two signals, as shown in Figure 2.12. Because of the limits in frequency resolution
with these low number of samples, it would be difficult to design an algorithm to
differentiate harmonic from quasiperiodic based on the power spectrum alone. More
specifically, it would be impossible to come up with a sampling rate so that all of
the frequencies coincide directly with a frequency bin in the fixed FFT basis, which
means that there will be sinc bleed into adjacent bins (Figure 2.12).

45

Figure 2.12: The power spectral densities of a commensurate and non-
commensurate signal with relative harmonics at ratios 3 and π. The difference is
not nearly as evident as it is with the geometry of our sliding window embeddings,
and there are issue with sinc bleed for frequencies which are not commensurate with
the sampling.

This toy example demonstrates one of our main contributions in this work,
quasiperiodicity detection, and it forms the basis of our algorithm for detecting
anomalies in videos of vocal cords in Section 4.6 (Figure 4.25), which have delay
embeddings that behave very similarly to Figure 2.11. Note that our definition of
“quasiperiodic” is different from some others in the literature (e.g. Wang et al.
(2009)). While many in the engineering community define quasiperiodic as any
deviation from perfect repetition, we use a different, more specific definition. In
particular, we define quasiperiodic signals as those containing non-commensurate
frequencies (i.e. frequencies that are not rational with respect to each other). This
case is covered in detail theoretically by Perea (2016).

2.2.3 Connections To SSMs and Fourier Analysis

There are some connections between dynamical systems work and SSMs. Iwanski
and Bradley (1998) make the case for recurrence plots on raw signals without delay.
They show experimentally that the delay dimension doesn’t affect recurrence plots
much for certain low dimensional systems exhibiting chaos. This has been used as
an argument that delay embeddings are not needed when looking at SSMs (Junejo
et al. (2011)). However, we know that the delay is important for our applications with
periodic and quasiperiodic signals, and we will show how SSMs and delay embeddings
work in harmony in Chapter 4. It is also unclear how to tune the nearest neighbors

46

threshold for recurrence plots, so this just trades one potentially arbitrary parameter
choice (the window length) for another.

Also, though sliding window embeddings seem quite different from Fourier anal-
ysis, there are connections between the two. If a signal is perfectly periodic and the
window length is equal to the period length, then PCA on sliding window embedding
coincides with the Discrete Fourier Transform, as the sliding windows arranged in
columns form a circulant matrix.

Finally, one might be tempted to use PCA as an alternative for techniques like
false nearest neighbors (Kennel et al. (1992)) for determining the embedding dimen-
sion, but care must be taken when using singular value thresholds for determining
the embedding dimension (Mees et al. (1987)).

2.3 Manifold And Metric Learning

In this section, we review some practical methods for manifold learning on point
cloud data. As with topological data analysis, we will build structures on top of
a point cloud, but the goal here is inherently geometric. We seek to find a set of
lower dimensional coordinates to approximate the intrinsic metric of the manifold
from which the points are assumed to be sampled. We will review two techniques
that work off of the 1-skeleton (graph) of a discrete approximation of a manifold
at some particular scale: the Graph Laplacian and Diffusion Maps. We also show
an extension of diffusion maps to metric learning on multimodal data known as
Similarity Network Fusion, which we exploit heavily in our cover songs work to fuse
our new features with more classical ones. The main disadvantage of these methods
compared to topological data analysis is the requirement to choose a scale a priori
when the sampling density of the presumed manifold is unknown. However, we will
demonstrate some “tricks of the trade” for autotuning these thresholds, which we
leverage in our work.

2.3.1 The Graph Laplacian

We start by defining an important linear operator on graphs which is the discrete
analogue to the Laplace Beltrami operator on manifolds (∇2 in Rd). It is like a
“second derivative operator” for functions defined on a graph.

Definition 25. Given an undirected graph G “ pV,Eq, with |V | “ N the adjacency
matrix A is the following N ˆN matrix

Aij “

„

1 pvi, vjq P E
0 otherwise

(2.31)

the degree matrix D is a diagonal matrix which counts the number of edges

Dii “ |e P Es.t.vi P E|Dij,i‰j “ 0 (2.32)

47

Note that the value of Dii is simply the row sum of the ith row of A. Note also
that the matrix A is sparse if there are only OpNq edges, which is a common case
in k-nearest neighbor graphs for small k, a common choice for manifold learning.
Finally, note that the recurrence plot is a special case of an adjacency matrix when
the vertices are endowed with a time order. Because of this, we will sometimes use
the two interchangeably.

We can now define the Graph Laplacian(Chung (1997))

Definition 26. Given a graph G “ pV,Eq with |V | “ N and corresponding adjacency
and degree matrices A and D, then the unweighted graph Laplacian is defined as

L “ D ´ A (2.33)

Let f P Rn be a scalar function defined on the vertices. Then Lf at each vertex
is the sum of the differences of f at that vertex and f at its neighbors

ÿ

jPNpiq

fi ´ fj (2.34)

where Npiq are the indices of the vertex neighbors of vertex i. In this way, it is
like a second derivative of f 3. Note also that given the boundary matrix B1 defined
using Z coefficients and with a basis fixed in accordance with the vertices and edges,
the graph Laplacian can be written as

L “ B1B
T
1 (2.35)

This is one way of showing that the graph Laplacian is symmetric positive definite,
which means it has all real, positive eigenvalues. In this context, BT1 is sometimes re-
ferred to as the “edge adjacency matrix,” but in topological parlance this is actually
the “first coboundary matrix.” This connection to topology is no mathematical ac-
cident, and it is part of something much more general known as the Hodge Laplacian
(Jiang et al. (2011)). There is a general theorem that says the kernel of the p-Hodge
Laplacian is isomorphic to the pth homology group Hp. In the case of L, which is the
0-Hodge Laplacian, what this says is that the rank of the kernel of L indicates the
number of connected components. This is easy to verify directly from Definition 26.
Beyond L, we will use the 1-Hodge Laplacian to help us go from pairwise rankings
to a global ranking in Section 4.5.2.

2.3.2 Laplacian Eigenmaps / Generalized Fourier Modes

Beyond the connections of the kernel of the graph Laplacian to topology, there are
some very interesting properties of the eigenvectors of this matrix, which, when

3 If the weights are chosen non-uniformly and intelligently, this will converge to the Laplace-
Beltrami operator at fine enough sampling. An example is the cotangent weights in polygon meshes
in 3D Pinkall and Polthier (1993)

48

Figure 2.13: Examples of eigenvectors of the graph Laplacian on a circle graph
and a path graph. Vertex coordiante values are plotted on the graph as colors. The
eigenvectors of the circle graph recover the modes of the Discrete Fourier Transform,
and they come in pairs which are out of phase by π{2.

taken as a set of Euclidean coordinates, are referred to as Laplacian Eigenmaps
(Belkin and Niyogi (2003)). A truncated set of the first few eigenvectors can be
seen as a dimensionality reduction of the intrinsic geometry of the graph 4. The
second eigenvector is known as the fielder vector, and for connected graphs, it can be
thought of as the slowest varying harmonic of the graph. It is useful, for example, for
partitioning a graph into two parts (Berger et al. (2010)). In general, there is a strong
analogy between the eigenvectors and Fourier decomposition. To see why, take the
example of a circle graph of size N , where the adjacency matrix AC is defined as
follows:

ACij “

»

—

—

–

1 |i´ j| “ 1
1 i “ 1, j “ N
1 i “ N, j “ 1
0 otherwise

fi

ffi

ffi

fl

(2.36)

The first eigenvector is all 1s corresponding to an eigenvalue of 0 (as it would be
for any connected graph), and the subsequent eigenvectors come in pairs of two (all

4 When we refer to eigenvectors as occurring in an order, we are assuming that they are sorted in
ascending order by their eigenvalue, so the “first nonzero eigenvector” would refer to the eigenvector
corresponding to the eigenvalue with smallest magnitude

49

(a) Original Front (b) Original Back (c) Mode 1 Front (d) Mode 1 Back

(e) Mode 2 Front (f) Mode 2 Back (g) Mode 33 Front (h) Mode 33 Back

(i) 400 Modes Re-
constructed Front

(j) 400 Modes Re-
constructed Back

Figure 2.14: Eigenvectors of the graph Laplacian on a graph of the author’s face
embedded in 3D (20325 nodes, 60478 edges). The first nonzero mode captures a
single oscillation along the elevation, and the second one captures an oscillation
along the azimuth. As with the Discrete Fourier Transform, higher modes capture
finer detail. Projecting the x, y, and z coordinates onto the first 400 modes gives a
smoothed version of the geometry (at about a 20x compression ratio)

other eigenvalues have multiplicity 2)

xkpiq “ sinp2πki{Nq, ykpiq “ cosp2πki{Nq (2.37)

with corresponding eigenvalues λxk “ λyk “ 2 ´ 2 cosp2πk{Nq. In other words, the
eigenvectors of the graph Laplacian of an N -point circle recover the Discrete Fourier
Transform. Note how higher frequencies have higher eigenvalues. This is analogous
to the fact that

d2

dt2
cospωtq “ ´ω2 cosptq (2.38)

50

or that cosine eigenfunctions of the second derivative operator have higher eigen-
values for higher frequencies.

The top image of Figure 2.13 shows the first 8 nonzero eigenvectors of AC with
N “ 40. In general, graphs which have symmetries, such as the circle graph, will have
repeated eigenvalues. This means that the basis returned for the eigenvectors may
not be numerically stable. For instance, the sine and cosine functions are arbitrarily
rotated in Figure 2.13. But since L is symmetric, the eigenvectors must always be
mutually orthogonal, and they will always span the same space. For this graph, this
means the numerically returned eigenvectors with the same eigenvalue are always
π{2 out of phase with respect to their period, so that when they are plotted against
each other, they form a circle.

It is also instructive to examine the graph Laplacian of the path graph of N points,
which is the same as the circle graph, except it does not have the edge between
vertex 1 and vertex N . Though the path graph is only missing one edge compared
to the circle graph, this causes it to only retain the cosine modes that descend from
the quotient graph of a circle of length 2N since the cosine has mirror symmetry
around π 5 (note that we will exploit the mirror symmetry of the cosine in a similar
way in Section 4.3.1 for periodic videos in Eulerian coordinates). In particular, the
eigenvectors beyond the first constant eigenvector with eigenvalue 0 are

vkpiq “ cospπki{N ´ πk{2Nq (2.39)

with corresponding eigenvalues λk “ 2´ 2 cosp2πk{2Nq. In other words, the first
eigenvector is a half cosine, the next eigenvector is a cosine, the following eigenvector
is a cosine with 1.5 periods, etc. Since cosp2tq “ 2 cos2ptq´ 1, we see a characteristic
parabolic shape when plotting the first two nonzero eigenvectors next to each other
in Figure 2.13.

In addition to making quotient identifications to derive eigenvectors of graphs,
we can also derive the eigenvectors of special types of product graphs (Mahadevan
(2008)):

Definition 27. Given two undirected graphs G1 “ pU,E1q and G2 “ pV,E2q, the
Kronecker sum of the two graphs is the graph G “ G1

À

G2 that has the vertex set
U ˆ V and the edge set Epn1, n2q “ 1 in the following two cases

• n1 “ pui, vjq, n2 “ puk, vjq, and the edge between ui and uk exists in E1

• n1 “ pui, vjq, n2 “ pui, vkq, and the edge between vj and vk exists in E2

A remarkable fact is that the eigenvectors of the Laplacian of G “ G1

À

G2 are
the outer product of the eigenvectors of the Laplacians of G1 and G2: (Mahadevan
(2008)):

5 This is related to the concept of covering spaces in topology

51

Lemma 3. If G “ G1

À

G2, LG1v “ λv, and LG2u “ µu, then, treating u and v as
column vectors,

LG1
À

G2pvu
T
q “ pλ` µqvuT (2.40)

For instance, the Kronecker sum of two circle graphs is a torus graph, and this
is a way to see how the Discrete Fourier Transform in higher dimensions is an outer
product of 1D DFTs. This is analogous to the fact that

∇2
pcospω1xq cospω2yqq “ ´pω

2
1 ` ω

2
2q cospω1xq cospω2yq (2.41)

which is the outer product of the eigenfunctions in Equation 2.38 with eigenvalue
the sum of the two eigenvalues. The torus topology also elegantly expresses the
assumption that signals are assumed to be periodic along every dimension when
deriving the DFT.

Applications

In general, the Laplacian eigenvectors can be viewed as a “Fourier Transform on
graphs.” For instance, Figure 2.14 shows the Laplacian eigenvectors of a graph built
on the author’s face. This way of thinking enables a slew of applications, such as
lowpass filtering / smoothing of functions on graphs (Taubin (1995), Figure 2.14
bottom), graph function compression (Karni and Gotsman (2000)), and spectral
descriptors for graph classification (Reuter et al. (2006)), to name a few. In a par-
ticularly exotic application, it has even been used to come up with a basis for image
texture patches that out-performs the DCT by exploiting the fact that natural image
patches concentrate on the Klein bottle (Perea and Carlsson (2014)). In other words,
the eigenvectors of a Klein bottle graph form a slightly better basis for image patches
than Fourier-based approaches.

2.3.3 Reordering Signals with Laplacian of Sliding Windows

We now briefly develop one novel application of the graph Laplacian that ties into
the dynamical systems background. As shown in Section 2.2.2, the sliding window
embeddings of periodic signals form a topological loop. This implies that, at the right
scale, a mutual nearest neighbor graph (Definition 1.10) built on the sliding window
point cloud should be a circle graph, which means the first two nonzero eigenvectors
should be a sine and cosine, or orthogonal linear combinations therein. When plotted
against each other, they make an approximate circle, and the arctangent of the two
eigenvector coordinates at every window can be used to determine the phase of the
corresponding window in the periodic signal 6. The first sample of each window can
then be re-sorted by phase. Figure 2.15 shows an example of running this algorithm

6 Note that we are only modeling the phase of a full period, rather than the phase of each harmonic,
so the state space is a loop rather than a torus

52

Figure 2.15: An example of using the first two eigenvectors of the graph Laplacian
built on top of a delay embedding of a 1D signal to re-order the samples of that
signal to go through exactly one period. The re-sorted points are colored according
to where they occurred in the original signal. Note that the period is arbitrarily
circularly shifted due to the numerical instability of the two eigenvectors with the
same eigenvalue.

on a sampled signal fptq “ cosptq ` cosp3tq. There are only 12 samples per period in
the original signal, so the details of each period are rather coarse. However, once they
are re-sorted, we get a nice, fine-detailed representation of one period. This can be
used to fake temporal super-resolution or “slow motion” for signals. Eventually, we
hope to add some image processing tools to make aesthetically pleasing slow motion
representations of periodic videos using this technique.

Similar tricks with the graph Laplacian have been used to re-arrange images
around a loop as a pre-processing step for structure from motion (Averbuch-Elor
and Cohen-Or (2015)) and to re-order the frames of microscope images a developing
embryo (Dsilva et al. (2015)). A more topological approach with cohomology circular
coordinates was used to parameterize a sliding window embedding of the Lorenz
attractor (de Silva et al. (2012)).

53

2.3.4 Diffusion Maps

Now that we have developed the Graph Laplacian, we have the mathematical so-
phistication necessary to describe Diffusion Maps. Roughly speaking, diffusion maps
are a way of defining a distance between two vertices based on random walks which
initiate at each vertex, where the random walks are modeled by first order Markov
chains. The transition probabilities in the Markov chains are defined by a similarity
kernel

Definition 28. Given a point cloud X and a distance measure ρ between points in
X, we define a similarity kernel W as

Wij “ exp

ˆ

´
ρ2pxi, xjq

σij

˙

(2.42)

This is a similarity measure rather than a distance, as points which are far have a
score close to 0, and points which are close have a score closer to 1. Often, σij is set
to a constant, but a smarter choice is to autotune it based on the average distance
to the nearest neighbors of xi and xj. In particular, we can set

σκij “
µ

3

¨

˝

1

κN

¨

˝

ÿ

kPNκpiq

ρpxi, xkq

˛

‚`

¨

˝

1

κN

ÿ

kPNκpjq

ρpxj, xkq

˛

‚` ρpxi, xjq

˛

‚ (2.43)

where κ is the proportion of nearest neighbors taken (we usually choose κ “ 0.1),
Nκpiq refers to the κN nearest neighbors of xi, and µ is a parameter that can be
tweaked (usually in the range r0.3, 0.8s). This trick was used by Wang et al. (2014),
for example. Of course, kernels other than the Gaussian are possible, but we find
this works well in practice for our applications.

Once a similarity kernel W has been established, we can construct a Markov chain
by normalizing each row sum of W to be 1. That is, define the Markov probability
matrix P as

Pij “
Wij

řN
k“1Wik

(2.44)

If we create a diagonal matrix holding the row sums of P , this can be written as

P “ D´1W (2.45)

The matrix exponential P t
ij then gives the probabilities of starting at xi and

ending at xj after t steps. This is not yet a metric, however, as P is not even
symmetric. To ameliorate this, define the following distance:

Definition 29. Given a Markov transition matrix P , the diffusion distance at time
t is defined as the following distance between xi and xj

54

Figure 2.16: An example of applying diffusion maps to a pinched circle. The
result is a point cloud which is closer to a rounder circle, as evidenced by the first
two coordinates of the diffusion map and the SSM.

Dtpxi, xjq “
ÿ

xkPX

pP t
ik ´ P

t
jkq

2 (2.46)

In other words, the diffusion distance Dtpxi, xjq is the squared Euclidean distance
between rows i and j of P t. Since it is a Euclidean distance, it is a metric. The
diffusion distance will be low if there are many vertices which have a high probability
of being reached from both xi and xj after t steps, or high otherwise. Alternatively,
it can be visualized as the squared L2 distance between two bumps that have diffused
from delta functions at xi and xj after t time steps.

Unlike Laplacian eigenmaps, the diffusion distance in the form of Definition 29
does not have a natural way of decomposing into low and high frequency coordinates
for dimension reduction / smoothing. To obtain such a decomposition, we need to
once again do an eigendecomposition, but this time of P . The trouble is that P is
not a symmetric matrix7. However, it can be shown (De la Porte et al. (2008)) that
the eigenvalues of the “symmetric normalized transition matrix” P 1

P 1 “ D1{2PD´1{2
“ UΛUT (2.47)

7 Note that there are many version of Markov transition matrices, many of which are symmetric,
but we prefer the non-symmetric one given in this section with neighborhood sizes autotuned
mutually between two points, as it makes more sense in the presence of outliers.

55

are equal to the eigenvalues λ1, λ2, ..., λN of P , that the right eigenvectors of P
are given by the columns of D´1{2U , and that the left eigenvectors of P are given
by the rows of UTD1{2. For ease of explanation, we assume for the moment that
P “ P 1, which can be easily generalized to the non-symmetric case with the above
observations. Let the eigenvectors of P 1 be vk with corresponding eigenvalues λk.
Then the diffusion distance can be written as

Dtpxi, xjq
2
“
ÿ

k

λ2t
k ||vkris ´ vkrjs||

2
2 (2.48)

In other words, the diffusion maps can be realized by the following Euclidean
vector with squared distances

xris “

»

—

—

—

–

λ1v1ris
λ2v2ris

...
λkvkris

fi

ffi

ffi

ffi

fl

(2.49)

Assuming the eigenvalues are sorted in decreasing order now (as contrasted with
the graph laplacian), a truncated approximation can be obtained by taking the first
l ă k vectors. Hence, diffusion maps can now be used as a dimension reduction
technique.

Figure 2.16 shows an example of applying diffusion maps to a pinched circle. The
first 2 diffusion coordinates are plotted (l “ 2). This map has the desired effect of
lessening the pinch effect, since most random walks would go around the half circle
rather than jumping across the pinch points. It is for this reason that Bendich et al.
(2011) used diffusion maps as a pre-processing step before applying Vietoris-Rips
Complexes on point clouds, since 1D persistence is higher for rounder point clouds.

Advantages over Graph Laplacian

The symmetric normalized Markov matrix can also be used to derive weights in a
Laplacian eigenmap, so the two have similar spectral decompositions. The main ad-
vantage of diffusion maps lies in its robustness to topological noise. As demonstrated
in Figure 2.13, the addition of a single edge can have a drastic effect on the Lapla-
cian eigenmodes. By contrast, diffusion maps average over many random walks, so
this effect will be less pronounced. Some nice demonstrations of these differences in
nonrigid 3D shape quantification are given by Bronstein et al. (2009).

2.3.5 Similarity Network Fusion

Diffusion is useful beyond factoring out the extrinsic geometry with a single similarity
kernel. Joint diffusion can also be used to fuse the results of two or more different
kernels on the same point cloud to come up with a better fused diffusion map,
assuming the kernels capture complementary similarity information. This process,

56

introduced by Wang et al. (2012) with a followup by Wang et al. (2014), is known as
similarity network fusion. It is a type of metric learning which has proved to be very
successful when applied to fuse the results of different Smith Waterman schemes in
cover song identification, for instance (Chen et al. (2017)). We also show its utility
in fusing MFCC and HPCP features for cover song identification.

We now describe this process in more detail. First, starting with distance func-
tions ρ1 and ρ2, create kernels W1 and W2 with the neighborhood autotuned exponen-
tial of Equation 2.43. Now, create the self-similarity normalized Markov transition
matrices

P pi, jq “

#

1
2

W pi,jq
ř

k‰iW pi,kq
j ‰ i

1{2 otherwise

+

(2.50)

This is very similar to the markov chains defined in Section 2.3.4, but with a
regularized diagonal to promote self-recurrence. Once this matrix has been obtained,
we create a truncated k-nearest neighbor version of this matrix

Spi, jq “

#

W pi,jq
ř

kPNpiqW pi,kq
j P Npiq

0 otherwise

+

(2.51)

where Npiq are the k nearest neighbors of vertex i, for some chosen k. Now we
are ready to describe the algorithm, which updates the Markov transition probability
matrices by a joint multiplication process to represent cross-diffusion (as opposed to
ordinary matrix multiplication for ordinary diffusion). Let P 1

t“0 “ P 1, P 2
t“0 “ P2.

Then the joint multiplications each step are as follows

P 1
t`1 “ S1P

2
t pS

1
q
T (2.52)

P 2
t`1 “ S2P

1
t pS

2
q
T (2.53)

In other words, a random walk is occurring but with probabilities that are mod-
ulated by two similarity kernels. This process can be generalized to more than two
similarity kernels to m similarity kernels by the following update rule

P v
t`1 “ Sv

ˆ

ř

k‰v P
k
t

m´ 1

˙

pSV qT (2.54)

As shown by Wang et al. (2012), this process will eventually converge, but we
can cut it off early. Whenever it stops, the final fused transition probabilities are

P̂t “
1

m

M
ÿ

k“1

P k
t (2.55)

Figure 2.17 shows a synthetic example of similarity network fusion on 3 matrices
for a dataset with 120 points, using 5 nearest neighbors and 100 iterations. Though

57

Figure 2.17: An example of similarity network fusion on 3 different SSMs. There
are 3 clusters in this synthetic dataset. Each SSM measures one of the clusters with
reliability, while the other two are noisy. The final affinity matrix from similarity net-
work fusion, on the other hand, sees all three clusters clearly and distinctly separated
from the other clusters.

in Chapter 3, we find 3 iterations is enough to substantially improve results with
certain feature choices.

2.4 Sequence Alignment

Non-uniform time warping is a major theme in this work. In music, what happens
when two people are singing the same passage, but one singer accentuates the ri-
tardando more than another, dragging one section along? Similarly, what happens
when two different people make the same complex gesture, but one person does a
part of it faster than the other person? Naive algorithms that match sequences point
by point with a p-norm, such as Euclidean distance, are no longer appropriate, as the
sequences are misaligned in these cases. In this section, we review some algorithms
for dealing with this problem in practice. We first start by reviewing basic edit dis-
tance algorithms for string matching under deletion/addition/substitution, and we
show that a similar dynamic programming trick of “optimal subsequence alignment”
has been used to align any time series metric spaces which have real-valued distances.
Note that “dynamic” is an overloaded word in this thesis; it either refers to dynami-
cal systems or in this case (and in the case of Chapter 5) to a particular strategy in
algorithm design that breaks problems down intelligently into sub-problems whose
results can be re-used.

2.4.1 Levenshtein Distance And Variants

We first start by considering the problem of transforming one character string into
another with an optimal sequence of insertions, deletions, or letter swapping. More
formally, define the following notation and operations on strings

Definition 30. Let a string s be an ordered sequence of characters s1s2s3...sN from
an alphabet Σ. Let si:j be the substring of s starting at character i and ending

58

at character j ´ 1, or the empty string if j ď i. Let plus (+) represent string
concatenation. Define the following operations on a string

• Insertion: Ikps, aq “ s1:k ` a` sk:n

• Deletion: Dkpsq “ s1:k ` sk`1:n

• Substitution: Skps, aq “ s1:k ` a` sk`1:n

Given the above operations, the Levenshtein Distance (Levenshtein (1966)) is
defined as follows

Definition 31. Given two strings s1 and s2, the Levenshtein Distance between s1 and
s2, denoted LDps1, s2q, is the minimum number of operations needed to transform s1

and s2 into the same string

For instance, to transform “school” into “fools,” an optimal sequence of cost 4 of
operations on the first string would be

1. chool [Deletion]

2. hool [Deletion]

3. fool [Substitution]

4. fools [Addition]

A non-optimal sequence of cost 5 would be

1. chool [Deletion]

2. hool [Deletion]

3. ool [Deletion]

4. fool [Addition]

5. fools [Addition]

The Levenshtein Distance is a type of “edit distance” between strings. The
symmetry is inherent, since to transform s2 into s1, simply reverse the operations.
But the Levenshtein Distance also satisfies all of the properties of a metric space, as
shown by Waterman (1995).

Now that the distance has been defined, the question remains of how to calculate
it. Naively trying all possible alignments would be quite costly, since, as shown by
Waterman (1995), the number of possible alignments between two strings of length
n approaches p1 `

?
2q2n`1{

?
n as n approaches infinity. To design a tractable al-

gorithm, first one must make a very clever observation, which leads to a dynamic
programming algorithm. This is well-known and surveyed, for example, by Water-
man (1995), but we repeat it here in our own style.

Theorem 4. Given a string a of length M and a string b of length N , define
LDi,jpa, bq, i ď M and j ď N , as the Levenshtein Distance between the substrings
a1:i`1 and b1:j`1. Also define the following boundary conditions:

59

1. LD0,0pa, bq “ 0

2. LDi,0pa, bq “ i (matching a blank string to string a)

3. LD0,jpa, bq “ j (matching a blank string to string b)

then the following recurrence holds:

LDi,jpa, bq “ min

$

&

%

LDi´1,jpa, bq `1 Deleting character ai
LDi´1,j´1pa, bq `p1´ δpai, bjqq Matching ai and bj
LDi,j´1pa, bq `1 Deleting character bj

,

.

-

(2.56)
for 1 ď i ďM , 1 ď j ď N , where δ is the Kronecker delta function

To prove this, note that all characters have to be matched somewhere in the
alignment or deleted. This means that the last step of an optimal alignment between
a1:i and b1:j can do one of three things

1. Delete ai from a (case 1 in Theorem 4). This operation has a cost of 1, and
the rest of the optimal alignment comes from aligning a1:i´1 to b1:j at a cost of
LDi´1,j

2. Delete bj from b (case 3 in Theorem 4). This operation has a cost of 1, and
the rest of the optimal alignment comes from aligning a1:i to b1:j´1 at a cost of
LDi,j´1

3. Matching ai and bj. If ai “ bj, then this incurs no cost. Otherwise, it has a
cost of 1 for a swapping operation of either Sipa, bjq or Sjpb, aiq. These two
cases are encapsulated by the Kronecker delta in case 2 of Theorem 4. Then
the rest of the optimal alignment comes from aligning a1:i´1 to b1:j´1 at a cost
of LDi´1,j´1

By induction, this leads to a simple and efficient dynamic programming algorithm
with time complexity OpMNq for computing the Levenshtein Distance between the
entire sequences a and b, as shown in Algorithm 2. The base cases are aligning a
blank to a blank Dr0, 0s, aligning a blank a to substrings in b (the top row of D),
and aligning a blank b to substrings in a (the leftmost column of D). Then, the
inductive step has to be applied in an order so that the items to the left, above, and
left/above are filled in first. A simple “raster scan” algorithm can be used to fill in
this matrix, going row by row from left to right, starting at the topmost row. This
order ensures that Dri ´ 1, js, Dri, j ´ 1s, and Dri ´ 1, j ´ 1s are always computed
before Dri, js. There are other valid orders which are more convenient for parallel
processing, as will be explained more in Section 5.3.5.

Once the algorithm has completed, the optimal distance is always in the bottom
right most entry of D: DrM,N s, since this represents the optimal cost of aligning

60

Algorithm 2 Levenshtein Distance dynamic programming Algorithm

1: procedure LevenshteinDistance(a, b) Ź Strings a and b, |a| “M, |b| “ N

2: D Ð

0 1 2 . . . N
1 0 0 . . . 0
2 0 0 . . . 0
...

...
... . . .

...
M 0 0 . . . 0
looooooooooomooooooooooon

N`1

,

/

/

/

/

/

.

/

/

/

/

/

-

M`1 Ź Zero-Indexed 2D array

3: for i “ 1 : M do
4: for j “ 1 : N do
5: Dri, js Ð min tDri´ 1, j ´ 1s ` δpai, bjq, Dri´ 1, js ` 1, Dri, j ´ 1s ` 1u
6: end for
7: end for
8: return D[M, N]
9: end procedure

both full strings, by definition. A sequence of operations yielding the optimal cost can
also be recovered by keeping track of pointers from node pi, jq to all nodes pi´ 1, jq,
pi, j´1q, and pi´1, j´1q which tie for the optimal score Dri, js when their respective
operation is taken. These pointers yield a DAG over all of the nodes of D, and this
DAG can be traced backwards from DrM,N s to Dr0, 0s. Note that it is not actually
necessary to use OpMNq storage, as only the previously processed row ever needs
to be stored at any given time during the raster scan, and while back-tracing the
pointers can be re-computed on the fly. But for clarity in our examples, we visualize
the entire table.

An example of this algorithm having filled in D and the DAG arrows for the
traceback is shown in Figure 2.18. As this example shows, there is not always a
unique set of operations that can transform the strings into each other with optimal
cost. In other words, there are multiple paths through the DAG from node pM,Nq
to node p0, 0q. When we first presented this example, we showed one alignment
sequence which started by deleting “s” and “c” from “school” and then swapping
“h” with “f.” But as Figure 2.18 shows, it is also possible to first swap “s” with “f”,
then delete “c” and “h” and end up at the same place with optimal cost. And there
is yet a third optimal alignment deleting “s,” swapping “c” with “f,” and deleting
“h.”

Needleman-Wunsch

There is an easy way to generalize the dynamic programming algorithm used to solve
the Levenshtein Distance to accommodate non-unit costs and costs which depend on
the symbols being added/deleted/substituted. This leads to what’s known as the
Needleman-Wunsch Distance (Needleman and Wunsch (1970)). The goal is to again

61

f

o

o

l

s

s c h o o l

0 1 2 3 4 5 6

1 1 2 3 4 5 6

2 2 2 3 3 4 5

3 3 3 3 3 3 4

4 4 4 4 4 4 3

5 4 5 5 5 5 4

Figure 2.18: An example of the dynamic programming table that results by com-
puting the Levenshtein Distance between “school” and “fools.” Back-pointers are
shown to depict which alignments (addition/deletion/insertion) yield the best local
alignment. Red arrows are drawn along optimal alignment paths in the resulting
DAG.

find an optimal sequence of additions/deletions/substitutions/matches, but the costs
change as follows:

• There is an addition/deletion cost which is negative (usually -1)

• There is a substitution cost cpa, bq between characters a and b, which is always
negative, but which can vary depending on a and b. Herein lies the strength
of this algorithm; it can charge more for certain swaps than others, which is
useful in DNA processing where certain transcription errors between base pairs
are more likely.

• There is a new matching “cost” which is positive (usually +1) for characters
which match

The algorithm for solving for the Needleman-Wunsch distance is exactly the same
as the dynamic programming algorithm for Levenshtein Distance, except we are now
trying to find the sequence of operations that maximizes the alignment cost. In this
way, we think of it as a “score” rather than a cost. We could keep the weights like
they were with the Levenshtein Distance, but then the optimal cost may be negative,
which is aesthetically strange compared to a high score. This also gives a natural
way to implement local alignment, as shown in the next section.

62

2.4.2 Smith Waterman Sub-Sequence Alignment

The Levenshtein Distance and the Needleman-Wunsch distance both require match-
ing entire sequences to each other, but this may not be appropriate if the two signals
have beginnings or endings which are very different. This is particularly important
in cover songs, where one song could have an intro or an outro not present in the
other, but they otherwise match very well. To tackle this, there is an algorithm
for computing local alignments known as Smith Waterman (Smith and Waterman
(1981)). Like Needleman-Wunsch, it seems to maximize an alignment score, but the
alignment does not have to start on the first character and end on the last character.
To solve this, the exact same dynamic programming algorithm can be used, except
there is one extra “restart” condition if a local alignment has become sufficiently
poor. The recurrence is as follows

SWij “ max

$

’

’

&

’

’

%

SWi´1,j´1 `mpa, bq
SWi´1,j ` g
SWi,j´1 ` g

0

,

/

/

.

/

/

-

, SW0,j “ SWi,0 “ 0 (2.57)

where mpa, bq is a score of matching or mismatching, and g is a gap penalty. This
would be exactly the same as Needleman-Wunsch were it not for the 0 in the fourth
row. This is precisely what allows the alignment to restart locally.

Figure 2.19 shows the result of aligning the word “topology” to the word “topo-
graph”8 with alignment score `2, misalignment cost ´2, and gap penalty ´1. One
optimal local alignment is between the first four characters ”topo.” Another local
alignment with equal cost, obtained two different ways, is ”topog.”

2.4.3 Dynamic Time Warping

We now extend alignment concepts beyond strings with fixed addition/deletion/swap-
ping costs to time-ordered point clouds in real-valued metric spaces, with an algo-
rithm called “Dynamic Time Warping (DTW).” This is a fancy sounding name for
“aligning time-ordered point clouds in the same metric space.” It is quite popular in
the audio processing and music information retrieval communities, as it was invented
to align spoken word patterns (Sakoe and Chiba (1970), Sakoe and Chiba (1978)).
It has also made its way into many other applications, including general time se-
ries (Berndt and Clifford (1994)), gesture recognition (ten Holt et al. (2007)), touch
screen authentication (De Luca et al. (2012)), and video contour shape sequence
alignment (Maurel and Sapiro (2003)), to name a few of the thousands of works that
use it. Before we define it, we need some preliminary definitions. To start, we define
something like a correspondence between two time series, but for convenience of com-
putation, and for a more direct analogy with string matching algorithms, we don’t
want to allow backtracking along either sequence. That is, once a point x in the first

8 These two words are often confused with each other by lay people

63

t

o

p

o

l

o

g

y

t o p o g r a p h y

0 0 0 0 0 0 0 0 0 0 0

0 2 1 0 0 0 0 0 0 0 0

0 1 4 3 2 1 0 0 0 0 0

0 0 3 6 5 4 3 2 2 1 0

0 0 2 5 8 7 6 5 4 3 2

0 0 1 4 7 6 5 4 3 2 1

0 0 2 3 6 5 4 3 2 1 0

0 0 1 2 5 8 7 6 5 4 3

0 0 0 1 4 7 6 5 4 3 6

Figure 2.19: An example of the dynamic programming table that results by com-
puting Smith Waterman between “topology” and “topography,” using a matching
cost of `2, a non-matching cost of ´2, and a gap cost of ´1. Back-pointers are
shown to depict which alignments (addition/deletion/insertion) yield the best local
alignment, and the cells corresponding to the ends of these alignments are bolded.
Red arrows are drawn along optimal alignment paths in the resulting DAG.

sequence matches to a point y in the second sequence, a point after x must match to
a point after y. More formally, we want a special type of “ordered correspondence,”
called a warping path in the DTW literature, between two sequences.

Definition 32. Let X and Y be two sets whose elements are adorned with a time
order: X “ tx1, x2, ..., xMu and Y “ ty1, y2, ..., yNu. A warping path between X and
Y is a correspondence W satisfying the following two properties

• Monotonicity: If pxi, yjq PW, then pxk, ylq RW for k ă i, l ą j

• Boundary Conditions: px1, y1q, pxM , yNq PW

This ends up leading to the same allowable alignments as in Levenshtein Distance,
with the additional constraint that the first points and last points of the sequences
must be in correspondence. Given this definition, DTW is defined as

Definition 33. Let X and Y be two time-ordered point clouds indexed by the corre-
sponding time-ordered sets I and J , respectively, in a metric space with distances d.

64

The DTW Dissimilarity between X and Y is

DTWpX, Y q “ min
WPΩ

ÿ

pi,jqPW

dpxi, yjq

where Ω is the set of all valid warping paths between I and J .

Although DTW has a very similar flavor to Levenshtein Distance, it does not
induce a metric on sequences. For a counter-example inspired by Müller (2007),
consider a metric space on 3 elements a, b, c, where dpx, yq “ δpx, yq. Now consider
the following element sequences

• X “ abb

• Y “ abc

• Z “ accc

Then DTW(X, Y) “ 1, DTWpY, Zq “ 1, and DTWpX,Zq “ 3. Thus, DTWpX,Zq “
3 ą 2 “ DTWpX, Y q `DTWpY, Zq, violating the triangle inequality.

In spite of this, DTW is still useful as a measure of dissimilarity. One can use an
algorithm very similar to that of Levenshtein Distance to compute it, which follows
from a similar inductive observation:

Theorem 5. Given two time-ordered point clouds X and Y with M and N points,
respectively, in a metric space with distances d, define DTWi,jpX, Y q as the DTW
Distance between the first i points of X and the first j points of Y . Also define the
following boundary conditions:

1. DTW0,0pX, Y q “ 0

2. DTWi,0 “ DTW0,jpX, Y q “ 8

then the following recurrence holds

DTWi,j “ dpXi, Yjq `min

$

&

%

DTWi´1,jpX, Y q
DTWi,j´1pX, Y q

DTWi´1,j´1pX, Y q

,

.

-

, 1 ď i ďM, 1 ď j ď N (2.58)

DTW must match the final points of X and Y , which explains the presence of
dpXi, Yiq in Equation 2.58. Also, defining the boundary conditions to be 8 every-
where except p0, 0q forces the first points in each sequence to be in correspondence
(p1, 1q).

As Algorithm 3 shows, DTW is computed in a manner extremely similar to Lev-
enshtein Distance, and as with the Levenshtein Distance, it is possible to backtrace
to find the optimal warping path. The subtle difference in this algorithm is in the

65

Algorithm 3 Dynamic Time Warping Algorithm

1: procedure DTW(X, Y, d) Ź TOPCs X and Y with M and N points, metric d

2: D Ð

0 8 8 . . . 8
8 0 0 . . . 0
8 0 0 . . . 0
...

...
... . . .

...
8 0 0 . . . 0
loooooooooooomoooooooooooon

N`1

,

/

/

/

/

/

.

/

/

/

/

/

-

M`1 Ź Zero-Indexed 2D array

3: for i “ 1 : M do
4: for j “ 1 : N do
5: Dri, js Ð dpXi, Yiq `min tDri´ 1, j ´ 1s, Dri´ 1, js, Dri, j ´ 1su
6: end for
7: end for
8: return D[M, N]
9: end procedure

interpretation of backpointer arrows in the diagram. With Levenshtein Distance,
the arrows represented operations, which can include additions/deletions. But with
DTW, there are only matchings, and the arrows simply connect matched pairs which
occur in sequence. Also, there is the added condition that the first elements and last
elements of each sequence, respectively, must be matched.

Figure 2.20 shows an example of DTW between two 2D time-ordered point clouds
using the Euclidean metric in R2. Figure 2.21 shows an example of DTW between
two 1D time series using the absolute distance on R, which is a common application
of DTW to 1D time series. From these examples, it is clear that what is really
happening is a shortest path is being computed from the upper left to the lower right
of the CSM between two time-ordered point clouds. Using this observation, some
choose to implement fast marching techniques, a series of techniques for computing
solutions to discretized partial differential equations (in this case the inhomogeous
wave equation), as an alternative algorithm to find the minimum cost path from
lower left to upper right (Sprechmann et al. (2013)). This has the advantage of
leveraging highly optimized algorithms for fast marching that have been developed
in the applied PDEs community.

Efficient Approximations

Though the basic dynamic programming algorithm for DTW is quite simple, it has
been notoriously difficult to beat the quadratic time complexity of that algorithm.
Intuitively, a cross-similarity matrix between two time-ordered point clouds of length
M and N takes up OpMNq space, so a scheme which breaks the quadratic barrier
has to intelligently rule out ever computing some of the pairwise distances for gen-
eral time-ordered point clouds. A few months ago to the time of publication of

66

Figure 2.20: An example of DTW between two time-ordered point clouds in R2

using the Euclidean distance. The optimal warping path is sketched in cyan in the
cross-similarity matrix and the dynamic programming matrix.

this thesis, a group of researchers finally broke this bound theoretically with an
OpN2 log log logpNq{ log logpNqq time algorithm for sequences in R (Gold and Sharir
(2016)). However, most of the practical work has come in approximation algorithms,
which we focus on for the rest of this section.

One strategy for reducing the computational cost is to use global constraints on
allowed warping paths. For instance, one can limit the maximum and minimum
slope of allowed warping paths to be T and 1{T , respectively, for some constant
T . This narrows down the search region to a parallelogram, since regions outside
will have portions with slopes that exceed this bound. This is known as the Itakura
Parallelogram (Itakura (1975)). Minimizing the slope is a natural idea in beat-

67

Figure 2.21: An example of DTW between two 1D time series, using the abso-
lute height difference as the distance between two points. Even though these time
series look quite different, they are exactly the same (up to discretization) after a
re-parameterization. The optimal warping path is sketched in cyan in the cross-
similarity matrix and the dynamic programming matrix in the bottom two plots. In
the top right, points which are in correspondence based on this path are colored the
same.

68

Itakura Parallelogram Sakoe-Chiba Band

T

T

Figure 2.22: Global constraints on DTW: Itakura parallelogram (left) and Sakoe-
Chiba Band (right). The narrowed down search region is highlighted in a salmon
color in each case.

synchronous music processing, since we don’t want too many beats to be skipped in
a row in one or the other song, and we use this idea in our cover songs application
(Section 3.2.3). A similar idea is to assume that a point xi maps to a point yj if
and only if |i ´ j| ă T ; that is, the sequences are only allowed to drift T indices
away from each other. In this case, the number of cells needed to check is narrowed
down to OpNT q, so it can lead to a linear algorithm for small enough T . This is
known as the Sakoe-Chiba Band (Sakoe and Chiba (1978)). Figure 2.22 shows both
of these constraints pictorially. Unfortunately, it is quite likely for the optimal path
to leave these regions, which can render the results useless in practice, so care should
be taken when applying global constraints.

Recently, Ying et al. (2016) devised a clever ε-approximation scheme for global
unconstrained DTW that exploits the geometric configuration of natural curves to
approximate certain pairwise distances in the CSM, thereby avoiding all pairwise
distance computations. The idea is to partition the CSM into disjoint rectangles
with weights, so that for each rectangle R “ ri1, i2s ˆ rj1, j2s with weight wR

|dpXi, Yjq ´ wR| ď
ε

2
wR, @pi, jq P R (2.59)

If we then create a new approximate CSM where all of the entries in R are replaced
with wR, then this is like saying the section of X from Xi1 to Xi2 is approximately
the same distance from the section of Y from Yj1 to Yj2 (up to a proportion of the
distance), so they can be approximated by some constant distance wR. This makes it
so that the DTW values only need to be computed on the boundary of the rectangles,
since optimal cost paths which cut through constant regions can be done in constant
time. Note that similar tricks are used in fast multipole solutions of the N -body
problem (Coifman et al. (1993)).

Figure 2.23 shows an example of this algorithm. Ying et al. (2016) show that if the

69

Figure 2.23: An example of approximate DTW between two time-ordered point
clouds in R2, as computed by Ying et al. (2016), for ε “ 0.5. The optimal warping
paths are highlighted in cyan for both the full and approximate cases. Aside from
a few subtle deviations, the paths are nearly identical, and the computed cost is
certainly within ε “ 0.5. Also note how for further distances, there is more ε slack,
so there tend to be larger rectangles covering these regions.

two time-ordered point clouds are sampled from κ-packed curves; that is, curves with
arc length at most κr in every ball of radius r. For a κ-packed curve with spread σ
(ratio of maximum to minimum value in the CSM), the running time of the algorithm
is Opκ

2

ε
n log σq. The authors also devised an Opκ

ε
n log nq algorithm (Agarwal et al.

(2016)) that uses the well-separated pairs decomposition (Callahan and Kosaraju
(1995)) with KD-trees to come up with (possibly overlapping) rectangles, though
they note this scheme has a larger runtime constant that makes it slower than the
former scheme for moderately sized inputs (« 105 to 106 points).

Finally, Zhou and De la Torre (2016) devised a rather exotic technique that
expresses a warping path as a positive sum of dictionary warping paths which are
themselves valid warping paths (e.g. log, exponential, hyperbolic tangent), and they
solve for the coefficients of the dictionary jointly with the cost of the path. This is a
nonconvex problem, but they approximate it with quadratic programming and show

70

fast convergence in practice.

2.4.4 Fréchet Distance

There is another distance which is worth mentioning known as the Fréchet Distance,
which is actually a metric between curves

Definition 34. Given two space curves γ1 : r0, 1s Ñ pM, dq, γ2 : r0, 1s Ñ pM, dq,
where M is some metric space with a distance d, the Fréchet Distance F between γ1

and γ2 is

F “ inf
f,g

sup
xPr0,1s

dpγ1pfpxqq, γ2pgpxqqq (2.60)

where f and g range over all orientation-preserving homeomorphisms from the
unit interval to itself. Alternatively, depending on convenience, it can be defined with
just a single orientation-preserving homeomorphism h (i.e. only warping a single
curve to match the other):

F “ inf
h

sup
xPr0,1s

dpγ1pxq, γ2phpxqqq (2.61)

The Fréchet Distance is often referred to colloquially as the “dog-walking dis-
tance.” It can be thought of as the minimum length of a leash that’s needed for a
human owner to remain attached to his/her dog as the human and dog walk forward
from start to finish along pre-determined paths at different rates. Homeomorphisms
from the unit interval to itself are like the continuous version of time-ordered cor-
respondences. An infimum is taken over homeomorphisms to allow in the limit for
maps which don’t inject, or in plain English, “the human and the dog can remain
still at points along their paths.” It was actually used to initialize the approximate
DTW algorithm described in the previous section (Agarwal et al. (2016)).

Alt and Godau (1995) discovered an algorithm which computes the Fréchet Dis-
tance between two piecewise linear curves of length M and N respectively in time
OpNM logpNMqq. What’s interesting about this algorithm is that it is able to com-
pute this distance over continuously parameterized piecewise linear curves using a
continuous version of a CSM known as a “free space diagram.” This is in contrast
to DTW, which only works at discrete vertices. There is also a variant of Fréchet
Distance more similar to DTW called Discrete Fréchet Distance (Eiter and Mannila
(1994)). This algorithm is an approximation of the full Fréchet Distance between
two piecewise linear curves, hopping from vertex to vertex and ignoring the segments
in between, which makes it computationally more similar to DTW. The algorithm
for Discrete Fréchet Distance and DTW are nearly identical, and Discrete Fréchet
Distance can also be computed in OpNMq time.

71

2.5 Music Signal Processing

This section will provide a brief overview of features from audio analysis which ag-
gressively reduce the dimensionality of raw audio while still retaining important
perceptual features.

2.5.1 Timbral Features

We first describe what are known as “timbral features,” which are essentially shape
features on top of the STFT meant to summarize relative information across the
spectrum (Tzanetakis and Cook (2002)). Before proceeding, a slight modification to
the STFT for dealing with real signals, known as the “spectrogram,” is needed

Definition 35. Given a discrete signal xrns of length N and its Discrete Fourier
Transform Xrks, the spectrogram Srks contains the first M coefficients of Xrks,
where

M “

"

N{2` 1 Neven
pN ´ 1q{2` 1 Nodd

*

(2.62)

The spectrogram subset contains all of the information needed to reconstruct a
real signal, since the upper half of the spectrum is redundant for real signals. Let
Spk, tq be a MˆF matrix storing the magnitude of the coefficients of the Short-Time
Spectrogram, where t is the frame number, k is the spectral sample number, M is
the number of spectrogram coefficients, and F is the number of STFT frames. Then
the following features describe timbre at a snapshot in time

1. Spectral Centroid: The center of mass of the Short Time Fourier Transform at
a particular frame t:

Ct “

řM
k“1 kSpk, tq

řM
k“1 Spk, tq

High-pitched electronic songs, for instance, would be expected to have a higher
spectral centroid than low-frequency trombone jazz songs.

2. Spectral Roloff: A kind of spectral shape descriptor which is the frequency
index to the left of which 85% of the spectrum’s magnitude is concentrated

Rt
ÿ

k“1

Spk, tq “ 0.85
M
ÿ

k“1

Spk, tq

solving for the roloff Rt

72

3. Spectral Flux: The L2 norm of the difference between successive spectrogram
frames.

Ft “
M
ÿ

k“1

pSpk, tq ´ Spk, t´ 1qq2

This measures how the spectrum is changing in time (electronic music with
dynamic instrumentation would be expected to change a lot more in a short
amount of time than low-key smooth jazz or classical music)

4. Low Energy Feature: The percentage of STFT frames which have an RMS
energy less than the average RMS energy over all frames.

5. Zero Crossings: This is the only timbral feature not based on the STFT, but
which has been found to perform very well in practice. It is a time domain
measure of high-frequency content of a sound sample.

Zt “
1

2
|signpxrnsq ´ signpxrn´ 1sq|

This feature is a very good discriminator between vowels (small Zt) and con-
sonants (large Zt), for example.

To ensure that the statistics are stationary, the spectrogram frames are usually
taken over very small intervals of about 30 milliseconds. For longer blocks, some
authors simply compute all of the 30 millisecond features within that interval and
replace them with the mean/average over the entire interval (Tzanetakis and Cook
(2002)), though in Chapter 3, we show that increasing the window size has its own
advantages.

2.5.2 Mel-Frequency Cepstral Coefficients (MFCCs)

Timbral features are extremely simple, but slightly more sophisticated techniques are
needed for truly good results in genre classification (Tzanetakis and Cook (2002))
and artist classification (Ellis (2007b)), for instance. The first group of these features
relies on a classical transformation known as “Mel-Frequency Cepstral Coefficients”
(MFCC) (Bogert et al. (1963)), which are also designed to pick up on aspects of
timbre using the STFT. Given a spectrogram for a sound sequence Spk, tq, as defined
in the previous section, the MFCC is calculated as follows

1. Multiply each frame of Sp:, tq by the “Mel-Filterbank” to yield a new matrix
Mpn, tq, whereM is a TˆM matrix; T is the number of filters in the filterbank
and M is the number of frames in the spectrogram. The mel-filterbank is a
series of T overlapping triangular windows which are exponentially spaced in
frequency to model the fact that humans perceive pitch logarithmically. The
shape of the filterbank is shown in Figure 2.24.

73

Figure 2.24: The shape of the logarithmically-spaced Mel Filterbank

2. Take the log of the magnitude of each element ČMpn, tq Ð logp|Mpn, tq|q. This
models that fact that humans perceive loudness logarithmically as well as pitch.

3. Perform a DCT on each window of ĂM: ČMp:, tq DCT
ÝÝÝÑMFCCp:, tq. The result-

ing DCT coefficients are referred to as MFCC coefficients.

Figure 2.25 shows an example of the spectrogram of a song before MFCC is
applied and after MFCC is applied and inverted to bring it back. The spectral
envelope of the signal is clearly preserved, but the exact notes and their harmonic
overtones are lost and blurred together within an octave.

2.5.3 Automatic Beat Tracking

Synchronizing features to beats is a common preprocessing task, particular for cover
songs, as it is a natural way to control for tempo variations between recordings.
This is usually much more difficult than one would think due to the cacophony of
different instruments and sounds in most natural music which could be confused as
indicating rhythmic events. Most techniques start with what is known as an audio
novelty function (Bello et al. (2005)), which is a 1D surrogate signal at a much lower
sample rate than the audio (by a factor of the STFT hop size, usually around 512)
whose peaks indicate possible beat onsets (e.g. percussive strikes). Figure 2.26 shows
an example of an audio novelty function which is defined as the sum of the positive
differences in spectrogram bins spaced on a Mel-scale (Ellis (2007a)). Looking at
the spectrogram in that figure, many vertical lines are apparent. These vertical lines
indicate possible beat onsets, as percussive strikes tend to be broadband events.
Therefore, a moment at which all of the frequency bins suddenly change in magnitude
is a candidate for a percussive beat onset. In geometric terms, this can be viewed
as the “jump” of a sliding window embedding using Mel-spaced magnitude STFT
coefficients.

74

Time
5 10 15 20 25

Fr
e
q
u
e
n
cy

0

1000

2000

3000

Doves After MFCC

Time
5 10 15 20 25

Fr
e
q
u
e
n
cy

0

1000

2000

3000

4000

Figure 2.25: An example of MFCC features on a 30 second clip from Prince’s
“When Doves Cry.” The top figure shows the spectrogram of the original clip, and
the bottom shows the spectrogram of the clip after it has been summarized by the
first 20 MFCCs per frame and brought back. The red box highlights a region that
shows the overal spectral shape is preserved, but the exact harmonics of notes are
blurred together.

There is an absolute zoo of possible audio novelty functions. For instance, Gouyon
et al. (2007) review 172 different functions in a single paper. The success of the
methods is highly variable and depends largely on genre, so it is difficult to say
which one is the best in general, though the current state of the art appears to
be a method by Böck and Widmer (2013). In general, orchestral music is quite
challenging, as stringed instruments do not signal onsets with broadband as much as
phase changes due to switching bowing directions, so some works use the complex
STFT magnitude differences instead of the spectrogram absolute value differences.

Once audio novelty functions have been extracted, we would like to turn them
into beat onsets so that we can figure out where a computer should “tap its foot”
to the music. Most techniques which extract beat onsets use dynamic programming
in some way. For instance, Ellis (2007a) use a technique which tries to find an
optimal set of beat onsets that maximize the audio novelty function at each declared
onset, while minimizing the deviation from a tempo within onsets. A more effective
technique uses a hidden markov model that takes into consideration low values of
the audio novelty function as indicating non-beat events, thereby incorporating more
information than simply the peaks (Degara et al. (2012)). By most metrics, Krebs
et al. (2015) appear to have improved on this slightly, with the current state of the
art.

75

Figure 2.26: An example of the spectrogram and associated mel scale audio novelty
function on “Let It Be” by The Beatles, using the method of Ellis (2007a). Peaks
occur when there are vertical lines in the spectrogram corresponding to broadband
percussive events.

2.5.4 Chroma Features

While the MFCC picks up on the overall shape of the spectrum, which means voices
and instruments are well-preserved, the exact pitch content gets blurred out. Pitches
are quite important for determining what key a song is in and for determining chord
progressions. A feature set known as “Chroma” has been developed to fill this gap
(Bartsch and Wakefield (2001) Fujishima (1999)). The idea is completely comple-
mentary to MFCC; rather than perserving the spectral shape, an absolute spectral
reference of notes is disregarded, and frequencies corresponding to notes that are the
same pitch are collapsed into a single equivalence class. For instance, a note that
is heard as an “A” corresponds to 440hz, 880hz, 1760hz, etc (note the doubling of
frequency per octave). There are 12 equivalence classes (halfstep notes) per octave,
so the feature will report 12 different pitch strengths per spectrogram frame. More
specifically, given an M ˆ F spectrogram Spk, tq, design a 12ˆM matrix W known
as the “Chroma matrix,” so that

C “ WS (2.63)

C is a 12ˆF matrix known as the chromagram which contains the strength of each
note for each frame of the spectrogram. Figure 2.27 shows what this matrix looks
like. Each row of the matrix W corresponds to a halfstep, and upon multiplication
by the matrix F , the row numerically integrates energy around all frequencies that

76

Figure 2.27: A visualization of the Chroma matrix

correspond to a note at that halfstep. A Gaussian bump is placed over the center
frequency of each pitch in the halfstep equivalence class to count notes that are
slight deviations away from a perfect pitch to still be counted properly. Note how
the widths of the Gaussians become larger as the center frequency goes up, to model
the fact that humans perceive pitch logarithmically.

Figure 2.28 shows the chromagram of two octaves of a chromatic scale (all half-
steps in sequence) played on the piano. This feature actually did quite well at
picking up on the scale, which started on a D sharp. Notice, however, that in ad-
dition to the ground truth notes, the fifths of the notes show up strongly as well
but slightly weaker, since the piano has overtones due to the physical structure of
the vibrating string. To control for this in applications where the specific notes are
important, Gómez (2006) designed a feature set known as “harmonic pitch class pro-
files” (HPCP). These have also been shown to work well in cover songs applications
compared to other types of chroma features (Serra et al. (2008a)), which we have also
verified experimentally, so these are the features we will use in our work. Because
there are often many tricks and optimizations that accumulate over years of work, we
use the Essentia library to compute these features (Bogdanov et al. (2013)), rather
than relying on our own naive implementation.

2.5.5 Audio Fingerprinting

We now review a technique for audio retrieval known as “audio fingerprinting,” which
is the technique used in the popular “Shazam” app (Wang (2006)), which can rec-

77

Figure 2.28: Example of a chromagram on 2 octaves of a chromatic scale played
on a piano, which starts on a D sharp. The top plot shows the original spectrogram,
while the bottom plot shows the chromagram. Solid black lines are drawn over the
ground truth notes that are being played at each frame, and dashed black lines are
drawn over fifths of the ground truth notes. Heat corresponds to strength of the
note, where red means strong and blue means weak

ognize songs after only a few seconds of audio, provided that the query song is in
a database. The effectiveness of this technique is quite remarkable and surprised
many in the music information retrieval community. Picking up a song on a phone’s
microphone across a room introduces lots of noise and distortion, and the algorithm
is supposed to work after only a few seconds, which seems like it should be impos-
sible given how difficult most basic music information retrieval tasks are (we can’t
even perfectly track beats yet!). However, there is an advantage to looking for exact
copies of recordings, which is what makes audio fingerprinting possible. Even if there
is distortion, enough patterns will be in common between the spectrograms of the
original and the distorted version over time, even if some features are missing. This
is certainly not the case for cover songs, however, which is why that problem remains
challenging (Chapter 3).

Haitsma / Kalker Technique

One of the earliest successful approaches for audio fingerprinting was by Haitsma and
Kalker (2002). They turn their spectrogram images into binary images by recording
whether the gradient at a particular spectrogram bin is going up or down as time

78

Figure 2.29: The bitmask has generated by Haitsma and Kalker (2002) on a spec-
trogram patch. Note, for example, how right after window 150 the descending pitch
trajectories are discernible in the binary mask.

progresses to the right. In particular, given a spectrogram S, create a binary image
B so that

Bpt, fq “

"

1 Xpt, fq `Xpt` 1, f ` 1q ą Xpt, f ` 1q `Xpt` 1, fq
0 otherwise

*

(2.64)

Figure 2.29 shows such a mask. To reduce the effect of windows which may be
offset between a database and query version, they choose a much larger window size
then hop size so that there is a 95% overlap in the STFT windows. We find a similar
use of long window sizes in regularizing the SSMs in MFCCs in our cover songs work
(see e.g. Figure 3.2). Once they have these masks, they are able to hash blocks of
these binary regions and compare them to a database, and this works very well for
audio fingerprinting, even in the presence of some errors.

The Shazam Technique

The technique used in Shazam was developed by Wang et al. (2003), and it has
similar performance to Haitsma and Kalker (2002), but its representation is much
more sparse. The technique works by picking local maxes in the spectrogram and
coming up with fingerprint primitives which are pairs of maxes. Over time, even for
degraded recordings, the chances that some fraction of these primitives is contained
in two songs which are not the exact same recording becomes vanishingly small.
Figure 2.30 shows an example of a song query that we recorded from an album
playing on our laptop speakers, which severely degraded the audio. When queried
against all songs in the album, however, the correct song is returned by this technique.

Other Applications of Audio Fingerprinting

Aside from the Shazam application, there are some other very neat applications of
audio fingerprinting. In the era of big data, there is a lot of code to automatically

79

Query audio

1 2 3 4 5 6 7 8 9 10

Time (Seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
e
q

u
e
n
cy

 (
h
z)

Match: 16 at -0.192 sec

0 1 2 3 4 5 6 7 8 9 10

Time (Seconds)

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
e
q

u
e
n
cy

 (
h
z)

Figure 2.30: An example of the “Shazam technique” of Wang et al. (2003), using
code by Ellis (2009). The query audio shown on top is a degraded version of Ma$e’s
“24 Hours To Live.” This clip was compared to all tracks in his album Harlem World,
and track 16 (the correct track) was returned. Matching fingerprint segments are
drawn in green, while mismatched segments are drawn in red.

scrape music files from the web to make large corpora of music to advance research
in music information retrieval, but it is likely that there are duplicate tracks that
occur without manual checking. Audio Fingerprinting can detect and remove these
duplicate tracks, but it will avoid removing cover songs or other similar but different
enough songs that we want to keep. Additionally, in some cases, music producers
will use the exact same clip at different parts of the same song. Audio Fingerprinting
can be used to tell the difference between such mixes and unique renditions of the
same musical expression, which may be difficult to distinguish by ear. This is a way
to automatically reverse engineer part of the production of a song.

2.5.6 Loop Ditty

To help understand the features better, we created an interface that synchronizes
PCA on sliding window embeddings summarized by the different features to the
music, which we call “Loop Ditty.” The effect is a time-ordered point cloud which
“waves to the music” as the song progresses. Beats show up as back and forth mo-
tion, choruses and verses tend to cluster together, and transitions between different

80

Figure 2.31: An screenshot of the LoopDitty Interface (http://www.loopditty.
net) on the song “Work Hard Play Hard” by Wiz Khalifa. Different colors indicate
different times, so regions with multiple colors indicate recurrence in the music. We
have annotated where the verse, chorus, transitions, and outro occur spatially.

segments are path-like. There are better ways to quantify music structure (McFee
and Ellis (2014)), but we are not aware of a comparable interface. The closest work
we have found is by Schwarz et al. (2008), who do 2D PCA on MFCC features to
help users navigate through a collection of audio grains for concatenative synthesis.

Figure 2.31 shows a screenshot from our interface. Loop Ditty is currently live at
the URL http://www.loopditty.net. It is powered by a web server which computes
features on the server side, and by Javascript and WebGL to draw the 3D projected
curve synchronized to the music on the client side. Users can paste any valid URL
from SoundCloud, and the features will be computed for that song. They can also
upload their own music. Once the music has been loaded in, users can check and un-
check different feature sets they want to include, they can vary the window length,
and they can even share their discoveries on Twitter, with an optional animated GIF
of the curve in 3D. These updates are all done client side.

We have found that this interface is extremely fun to play with, and it was largely
the motivation for using shape as a way to identify cover songs.

81

http://www.loopditty.net
http://www.loopditty.net
http://www.loopditty.net

3

Cover Song Identification Fusing MFCC Shape
Sequences And Chroma

A “cover song” is a different version of the same song, usually performed by a differ-
ent artist, and often with different instruments, recording setting, mixing/balance,
tempo, and key. It is not well-defined mathematically, but more of a “you know it
when you hear it” scenario. For completeness, we provide two more definitions of
cover songs below from two community-based online projects that chronicle cover
songs

“ A cover is a song that is performed by a performer different from the original
performer. ” 1

“ A cover song, also known as a remake or cover version, is a new release of a
song originally recorded or released by a different artist. For instance, The Rolling
Stones released ‘Satisfaction’ in 1965 and Otis Redding and Devo later released their
own versions of this classic song, putting their own musical spin on the well-known
hit. ” 2

In this work3, we will be evaluating algorithms on a set of songs that have been
labeled as covers of each other, so we sidestep the issue of a rigorous general definition
and instead declare success when our algorithm recognizes the correct song clusters.
In this way, our work can be viewed as designing unsupervised features for assessing
“high level music similarity” beyond exact recording retrieval. In fact, in most of the
datasets, even live versions by the original artist are considered to be “cover songs,”
since the acoustic scenarios are so different. By then end of this chapter, we will

1 https://secondhandsongs.com/wiki/Guidelines/Cover

2 https://www.coversproject.com/

3 About a third of this chapter overlaps with the paper Tralie and Bendich (2015), which is
currently in print as part of the proceedings of ISMIR 2015.

82

https://secondhandsongs.com/wiki/Guidelines/Cover
https://www.coversproject.com/

Robert Palmer

1 2 3 4 5 6 7 8 9

Time (sec)

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
e
q

u
e
n
cy

 (
h
z)

Tina Turner

1 2 3 4 5 6 7 8 9

Time (sec)

0

500

1000

1500

2000

2500

3000

3500

4000

Fr
e
q

u
e
n
cy

 (
h
z)

Figure 3.1: Audio audio fingerprints with the “Shazam” technique (Wang et al.
(2003)) on Robert Palmer’s “Addicted To Love” covered by Tina Turner. The fin-
gerprints are shown in red. Although patterns in the spectrograms are qualitatively
similar, none of their fingerprints match.

develop an unsupervised low level fusion technique which achieves state of the art
results by combining our new geometric features with more traditional pitch-based
features. In particular, state of the art supervised techniques on the popular “covers
80” benchmark dataset yield a mean reciprocal rank (MRR) of 0.625 (Chen et al.
(2017)), while our completely unsupervised technique achieves a MRR of 0.845.

3.1 Automatic Cover Song Identification

Machine identification of cover songs is a surprisingly difficult classical problem that
has long been of interest to the music information retrieval community (Ellis (2006)).
This problem is significantly more challenging than traditional audio fingerprinting,
because a combination of tempo changes, musical key transpositions, embellishments
in time and expression, and changes in vocals and instrumentation can all occur
simultaneously between the original version of a song and its cover. Figure 3.1 shows
a motivating example. Hence, low level features used in this task need to be robust
to all of these phenomena, ruling out raw forms of popular features such as MFCC,
Constant-Q Transform (CQT), and Chroma.

One representative prior approach, as reviewed in Section 3.1.2, is to compare

83

beat-synchronous sequences of Chroma vectors between candidate covers. The beat-
syncing helps this be invariant to tempo, but it is still not invariant to key. However,
many schemes have been proposed to deal with this, up to and including a brute
force check over all key transpositions.

3.1.1 Our Contributions

Chroma representations factor out some timbral information by folding together all
octaves, which is sensible given the effect that different instruments and recording
environments have on timbre. However, valuable non-pitch information which is
preserved between cover versions, such as spectral fingerprints from drum patterns,
is obscured in Chroma representation. This motivated us to take another look at
whether timbral-based features could be used at all for this problem. Our idea is
that even if absolute timbral information is vastly different between two versions of
the same song, the relative evolution of timbre over time should be comparable.

With careful centering and normalization within small windows to combat differ-
ences in global timbral drift between the two songs, we design MFCC-based features
which are approximately invariant to cover. These features, which are based on
self-similarity matrices (SSMs) of MFCC coefficients, can be used on their own to
effectively score cover songs. This, in turn, demonstrates that even if absolute pitch
is obscured and blurred, cover song identification is still possible. Furthermore, since
the feature sets are so different from traditional pitch-based HPCP features used to
do cover song identification, they provide complementary information. We devise
various fusion schemes to exploit this in Section 3.3, which allows us to obtain better
results than either feature set alone.

Section 3.1.2 reviews prior work in cover song identification. Our method using
MFCC-based techniques is described in detail by Sections 3.2 and 3.2.3. We then
provide three different fusion schemes in Section 3.3 to combine our features with
traditional features for this task. Finally, we report results on the “Covers 80”
benchmark dataset (Ellis (2007c)) in Section 3.4, and we apply our algorithm to the
recent “Blurred Lines” copyright controversy.

3.1.2 Prior Work

To the best of our knowledge, all prior low level feature design for cover song identi-
fication has focused on Chroma-based representations alone. The cover songs prob-
lem statement began with the work of Ellis (2006), which used FFT-based cross-
correlation of all key transpositions of beat-synchronous Chroma between two songs.
A follow-up work by Ellis and Cotton (2007) showed that high passing such cross-
correlation can lead to better results. In general, however, cross-correlation is not
robust to changes in timing, and it is also a global alignment technique. Serra (2007)
extended this initial work by considering dynamic programming local alignment of
Chroma sequences, with follow-up work and rigorous parameter testing and an “op-

84

timal key transposition index” estimation (Serra et al. (2008a)). The same authors
also showed that a delay embedding of statistics spanning multiple beats before local
alignment improves classification accuracy (Serra et al. (2009)). A recent technique
by Silva et al. (2016) approximates this technique by reporting median distances
over all nearest neighbors of delay sequences from one track to another, so that the
expensive quadratic local alignment is avoided. In a different approach, Kim et al.
(2008) compare modeled covariance statistics of all Chroma bins, as well as covari-
ance statistics for all pairwise differences of beat-level Chroma features, which is not
unlike the “bag of words” and bigram representations, respectively, in text analysis.
Other work by Bello (2007) modeled sequences of chords as a slightly higher level
feature than Chroma. Slightly later work concentrated on fusing the results of music
separated into melody and accompaniment (Foucard et al. (2010)) and melody, bass
line, and harmony (Salamon et al. (2012)), showing improvements over matching
Chroma on the raw audio.

Some of the more recent work on cover song identification has focused on fast
techniques for large scale pitch-based cover song identification, using a sparse set of
approximate nearest neighbors (Tavenard et al. (2012)) and low dimensional pro-
jections (Humphrey et al. (2013)). Ellis and Thierry (2012) and Nieto and Bello
(2014) also use the magnitude of the 2D Fourier Transform of a sequences of Chroma
vectors treated as an image, so the resulting coefficients will be automatically in-
variant to key and time shifting without any extra computation, at the cost of some
discriminative power.

There have also been a number of recent works on feature fusion for cover song
identification. Osmalsky et al. (2015) use standard rank aggregation techniques to
fuse different feature sets that are based on beat-synchronous Chroma. They also
show, rather surprisingly, that performance is boosted when incorporating features
which, by themselves, would lead to poor performance, such as tempo and song
duration. Followup work by Osmalsky et al. (2016) shows that adding our SSM-
based features further improves results. Finally, Chen et al. (2017) show that using
similarity network fusion on the pairwise scores between all different cover songs using
two different constrained versions of Smith Waterman (one of which the authors call
“DMax”) gives better results than either alone. We draw particular inspiration from
this work and use a similar approach in Section 3.3.2, though we also put our own
twist on it in Section 3.3.4 which gives much better results.

Outside of cover song identification, there are other works which examine gappy
sequences of MFCC in music, such as Casey and Slaney (2006). However, these
works look at matched sequences of MFCC-like features in their original feature
space. By contrast, in our work, we examine the relative shape of such features.
Finally, we are not the first to consider shape in an applied musical context. For
instance, Urbano et al. (2011) turns sequences of notes in sheet music into plane
curves, whose curvature is then examined. To our knowledge, however, we are the
first to explicitly model shape in musical audio for version identification.

85

3.2 MFCC-Based Time-Ordered Point Clouds from Blocks of Audio

Before we describe how to fuse our features with other features, we first develop a
full pipeline with only MFCC-based features. Surprisingly, even restricting solely
to this feature set, which significantly obscures notes (Figure 2.25), we are able to
achieve reasonable classification performance.

3.2.1 Beat-Synchronous Block/Windowing

As many others in the MIR community have done, including Ellis (2006) and Ellis and
Cotton (2007) for the cover songs application, we compute our features synchronized
within beat intervals. We use a simple dynamic programming beat tracker developed
by Ellis (2007a). Similarly to Ellis and Cotton (2007), we bias the beat tracker
with three initial tempo levels: 60BPM, 120BPM, and 180BPM, and we compare
the embeddings from all three levels against each other when comparing two songs,
taking the best score out of the 9 combinations. This is to mitigate the tendency of
the beat tracker to double or halve the true beat intervals of different versions of the
same song when there are tempo changes between the two. The trade-off is of course
additional computation. We should note that other cover song works, such as Serra
et al. (2008a), avoid beat tracking step altogether, hence bypassing these problems.
However, it is important for us to align our sequences as well as possible in time so
that the SSMs are in correspondence, and this is a straightforward way to do so.

Given a set of beat intervals, the union of which makes up the entire song, we
take blocks to be all contiguous groups of B beat intervals. In other words, we
create a sequence of overlapping blocks X1, X2, ... such that Xi is made up of B
time-contiguous beat intervals, and Xi and Xi`1 differ only by the starting beat of
Xi and the finishing beat of Xi`1. Hence, given N beat intervals, there are N´B`1
blocks total. Note that computing an embedding over more than one beat is similar
in spirit to the Chroma delay embedding approach in Serra et al. (2009). Intuitively,
examining patterns over a group of beats gives more information than one beat alone,
the effect of which is empirically evaluated in Section 3.4. For all blocks, we take
the window size W to be the length of the average tempo period, and we advance
the window intervals evenly from the beginning of the block to the end of a block
with a hop size of 512 samples. We would like to match beat-level periodicities
and fluctuations therein, so it is sensible to choose a window size corresponding to
the tempo. In Chapter 4, we will show some theory behind period matching the
window size (see also Figure 4.16). For a typical tempo of 120bpm at a sample rate
of 44100hz, this leads to a window size of 22050 and an overlap of roughly 97.5%
between windows. This is in contrast to most other applications that use MFCC
sliding window embeddings, which use a much smaller window size on the order
of 10s of milliseconds, generally with a 50% overlap, to ensure that the frequency
statistics are stationary in each window. In our application, however, a longer window
size makes our self similarity matrices (Section 3.2.2) smoother, allowing for more

86

(a) Window size 0.05 seconds

(b) Window size 0.5 seconds

Figure 3.2: PCA on the MFCC-summarized sliding window representation of an 8-
beat block from the hook of Robert Palmer’s “Addicted To Love” with two different
window sizes. We prefer longer windows because they lead to a smoother embedding,
which makes a pixel by pixel SSM comparison more robust.

reliable matches of beat-level musical trajectories, while having more windows per
beat (high overlap) leads to more robust matching of SSMs using L2 (Section 3.2.3).
Figure 3.2 shows the first three principal components of an MFCC embedding with
a traditional small window size versus our longer window embedding to show the
smoothing effect. Similar tricks have been used to increase the robustness of audio
fingerprinting (Haitsma and Kalker (2002)).

3.2.2 Euclidean Self-Similarity Matrices

We now describe how SSMs are used as a geometric feature in our pipeline. Unlike
Bello (2009), who compares SSMs on an entire song, we compare SSMs summarizing
blocks of audio summarizing on the order of tens of beats. For each beat-synchronous
block Xl spanning B beats, we have a 13-dimensional point cloud extracted from the

87

Figure 3.3: An 8 beat block from “We Can Work It Out” by The Beatles with a
live cover by Tesla. In both clips, the singers sing the words “we can work it out”
twice, and so there is one strong secondary diagonal in each one.

Figure 3.4: An 8 beat block from “Time” by Tori Amos and Tom Waits. In this
block, the pattern is “time” + instrumentals + “time” + different instrumentals.
The recurrence for the “time” is visible in both about 2/3 of the way through.

88

Figure 3.5: An 8 beat block from “Addicted To Love” by Robert Palmer covered
by Tina Turner. This song has stronger rhythmic events which give rise to a grid-like
structure in the SSMs.

Figure 3.6: “Claudette” by the Everly Brothers and Roy Orbison. The pattern in
this block is Guitar + “Oooh ooh Claudette” + Guitar.

89

Figure 3.7: A block diagram of our system for computing a cover song similarity
score of two songs using MFCC SSMs.

sliding window MFCC representation, from which we create a Euclidean SSM4. To
help normalize for loudness and other changes in relationships between instruments,
we perform z-normalization in each block (Definition 4) before computing the SSM.
Note that not every beat block has the same number of samples due to natural
variations of tempo in real songs. Thus, to allow comparisons between all blocks, we
resize each SSM to a common image dimension d ˆ d, which is a parameter chosen
in advance, the effects of which are explored empirically in Section 3.4.

Figure 3.3, Figure 3.4, Figure 3.5, Figure 3.6 show examples of MFCC SSM blocks
with 8 beats and 500 windows per block which were matched between a song and
its cover in the covers80 dataset. A divergent colormap was used to help visualize
structural similarities, where red indicates similarity and magenta indicates dissimi-
larity. Of course, in all examples, there are subtle differences due to embellishments,
local time stretching, and imperfect normalization between the different versions,
but as we show in Section 3.4, there are often enough similarities to match up blocks
correctly in practice.

3.2.3 Global Comparison of Two Songs

Once all of the beat-synchronous SSMs have been extracted from two songs, we do a
global comparison between all SSMs from two songs to score them as cover matches.
Figure 3.7 shows a block diagram of our system. After extracting beat-synchronous
timbral shape features on SSMs, we then extract a binary cross-similarity matrix
based on the L2 distance between all pairs of self-similarity matrices between two
songs. We subsequently apply the Smith Waterman algorithm on the binary cross-
similarity matrix to score a match between the two songs.

4 Note also that we exponentially lifter our MFCCs

90

Binary Cross-Similarity And Local Alignment

Given a set of N beat-synchronous block SSMs for a song A and a set of M beat-
synchronous block SSMs for a song B, we compute a song-level matching between
song A and B by comparing all pairs of SSMs between the two songs. For this we
create an N ˆM cross-similarity matrix (CSM), where

CSMij “ ||SSMAi ´ SSMBj||F (3.1)

is the Frobenius norm (L2 image norm) between the SSM for the ith beat block from
song A and the SSM for jth beat block for song B. In other words, we compute a pixel
by pixel comparison between each pixel in each d ˆ d resized similarity matrix, for
every pair of similarity matrices. This process is made reasonable computationally
with code in Listing 1.1, which is possible to speed up specifically because we are
using an L2 distance.

Given this cross-similarity information, we want to find the best local alignment
between songs. Local alignment is a more appropriate choice than global alignment
for the cover songs problem, since it is possible that different versions of the same
song may have intros, outros, or bridge sections that were not present in the original
song, but otherwise there are many sections in common. Good local alignments are
possible when the cross-similarity matrix contains long diagonals with low values,
indicating that many blocks match in sequence between the two songs. However,
even in well-matching songs, it is possible that these diagonals are interrupted due
to local errors in the beat tracking or for embellishments that add small sections.
Therefore, we choose to use the Smith Waterman algorithm, since it can connect two
long sections with interruptions by modeling gap costs.

To apply Smith Waterman, we turn the CSM into a binary matrix BM . A
binary matrix is necessary, since Smith Waterman only works on a discrete, quantized
alphabet, not real values (Serra et al. (2008a)). It also has the added advantage of
discarding possibly noisy real-valued metric information. To compute BM , we take
the mutual fraction κ nearest neighbors between song A and song B, as in Serra et al.
(2009). That is, BM

ij “ 1 if CSMij is within the κM th smallest values in row i of the
CSM and if CSMij is within the κN th smallest values in column j of the CSM, and 0
otherwise (Equation 1.10). Like Serra et al. (2009), we found that a dynamic distance
threshold for mutual nearest neighbors per element worked significantly better than
a fixed distance threshold for the entire matrix (Equation 1.9).

Once we have the BM matrix, we can feed it to the Smith Waterman algorithm.
We choose a version of Smith Waterman with diagonal constraints, which was shown
to work well for aligning binary cross-similarity matrices for Chroma in cover song
identification Serra et al. (2008a). In particular, we recursively compute a matrix D

91

Figure 3.8: An example of the CSM of all pairwise SSMs of normalized MFCC
blocks for the song “Before You Accuse Me” with versions by Creedence Clearwater
Revival and Eric Clapton, with the nearest neighbors threshold κ “ 1 and 20 beats
per block. Long diagonal regions indicate many blocks match in sequence, which is
a good indicator for a potential cover song, and this works even in the presence of a
matching interruption around beat 150 in each song. As a result Smith Waterman
returns a high fairly high score of 241.4.

Figure 3.9: An example of the CSM of all pairwise SSMs of normalized MFCC
blocks for the song “Before You Accuse Me” by Creedence Clearwater Revival ver-
sus the song “Summertime Blues” by the Beach Boys, with the nearest neighbors
threshold κ “ 1 and 20 beats per block. Since these songs are not true covers of each
other, there are no long diagonal regions in common, so Smith Waterman returns a
relatively low score of 40.4.

92

i, j

i-1,
j-1

i-1,
j-2

i-2,
j-1

i-2,
j-2

i-3,
j-2

i-2,
j-3

Figure 3.10: Constrained local matching paths considered in Smith Waterman, as
prescribed by Serra et al. (2008a).

so that

Dij “ max

$

’

’

’

’

’

’

’

’

’

’

’

’

’

’

&

’

’

’

’

’

’

’

’

’

’

’

’

’

’

%

Di´1,j´1 ` p2Bi´1,j´1 ´ 1q`
∆pBi´2,j´2, Bi´1,j´1q,

Di´2,j´1 ` p2Bi´1,j´1 ´ 1q`
∆pBi´3,j´2, Bi´1,j´1q,

Di´1,j´2 ` p2Bi´1,j´1 ´ 1q`
∆pBi´2,j´3, Bi´1,j´1q,

0

,

/

/

/

/

/

/

/

/

/

/

/

/

/

/

.

/

/

/

/

/

/

/

/

/

/

/

/

/

/

-

(3.2)

where

∆pa, bq “

$

&

%

0 b = 1
-0.5 b = 0,a = 1
-0.7 b = 0,a = 0

,

.

-

(3.3)

The p2Bi´1,j´1´1q term in each line is such that there will be a +1 score for a match
and a -1 score for a mismatch. The ∆ function is the so-called “affine gap penalty”
which gives a score of ´0.5´ 0.7pg ´ 1q for a gap of length g. The local constraints
are to bias Smith Waterman to choose paths along near-diagonals of BM . This is
important since in musical applications, we do not expect large gaps in time in one
song that are not in the other, which would show up as horizontal or vertical paths
through the BM matrix. Rather, we prefer gaps that occur nearly simultaneously
in time for a poorly matched beat or set of beats in an otherwise well-matching
section. Figure 3.10 shows a visual representation of the paths considered through
BM . This is similar to other schemes for restricting warping paths in the DTW
algorithm, as described by Müller (2007) (Figure 4.5 in that book), one of which was
used in Smith Waterman for the cover songs application (Chen et al. (2017)), which
the authors called “DMax.” Another way of understanding these constraints is that
they limit the slope of the warping path, so they are similar in spirit to the Itakura

93

Figure 3.11: A block diagram of our extended system which performs early fusion
of MFCC SSMs and HPCP before scoring with Smith Waterman. This pipeline is
the same for OR fusion and similarity network fusion before the fusion happens.

Parallelogram in DTW (Section 2.4.3). However, unlike DTW, since we are looking
for local alignments, we cannot rule out any portion of the CSM, so the algorithm
still takes quadratic time even with these constraints.

Figure 3.8 shows an example of a CSM, BM , and resulting Smith Waterman for
a true cover song pair. Several long diagonals are visible 5, indicating large chunks
of the two songs are in correspondence, and this gives rise to a large score of 241.4
between the two songs. Figure 3.9 shows the CSM, BM , and Smith Waterman for two
songs which are not versions of each other. By contrast, there are no long diagonals,
and this pair only receives a score of 40.4.

3.3 Feature Fusion Incorporating Pitch

So far, we have focused entirely on a feature based on MFCC, but we have ignored
a long line of work showing the utility of Chroma-based features. To tie our scheme
into past work and to leverage information that has been lost in an MFCC repre-
sentation, we also compute a pitch-based binary cross-similarity matrix BC based
on 12-bin HPCP features. First, we explain the details of how we use these features
in block/window framework, and then we explain three different techniques to fuse

5 Note that in songs which match, there is often more than one long diagonal, since there are
multiscale repetitions in each song (measures, verse/chorus, etc)

94

Figure 3.12: HPCP-based CSM between two cover versions of the song “Grand
Illusion” using a block size of 20 beats and two HPCP windows per beat. There is
one very long diagonal which leads to a high Smith Waterman score. Note that the
Styx version is live, and there is a long intro where they are hyping up the crowd, so
Smith Waterman doesn’t start matching until around 25% of the way through that
song.

Figure 3.13: An example 20-beat block of HPCP features matching between the
two covers in Figure 3.12. The matching notes can be seen visually.

these features with ours. Figure 3.11 shows an overall pipeline for the fusion process.

3.3.1 Blocked HPCP Features

Similarly to how we computed MFCC sliding windows over a block of B beats, and
following Serra et al. (2009), we compute a stacked delay embedding of the HPCP
features within B beats, with two HPCP windows per beat, for a total of 2B windows
per block. This has an advantage over other works which do not use a delay, as it gives
more context in time, and it is consistent with the overall block/windowing ideas in
this thesis. To normalize for key transpositions, we need to determine an “optimal
transposition index” (OTI) between two songs (Serra et al. (2008b)). Given the
average HPCP vector Xi P R`12 from song A and the average HPCP vector Yj P R`12

from song B, we compute the correlation XT
i Yj over all 12 half-step transpositions

of the original HPCP features in the block, and we use the transposition that leads

95

to the maximum correlation. Then, we compute cosine distance between all pairs of
HPCP blocks between the two songs. Finally, we can do the same binary K-nearest
neighbor thresholding as before, followed by Smith Waterman. Figure 3.12 shows
an example of two songs that match well with this technique, and Figure 3.13 shows
one of the matching HPCP blocks for this example.

3.3.2 Late Similarity Network Fusion

Taking inspiration from Serrà et al. (2012) and Chen et al. (2017), we perform
similarity network fusion (Section 2.3.5) on the Smith Waterman scores we get from
MFCC SSMs and HPCP blocks. In particular, for a collection of N songs, we
compute two or more score matrices that hold the pairwise scores between all songs.
For instance, we may compute an NˆN score matrix SM for MFCC-based SSMs and
an N ˆ N score matrix SH for HPCP blocks. Given a score matrix S, we compute
the kernel matrix W as W “ 1{S. Since Smith Waterman gives a higher score for
better matching songs, this ensures that the kernel is close to 0 in this case. At this
point, we perform similarity network fusion, as described in Section 2.3.5 (given a
nearest neighbor threshold κ and some number of iterations), and we obtain a final
N ˆ N transition probability matrix P . From this, we can look along each row to
find the neighboring songs with maximum fused probability.

3.3.3 Early OR Fusion

In addition to similarity network fusion after Smith Waterman has given scores, we
can fuse features before running Smith Waterman. One advantage of doing fusion
before scores are computed is that we don’t need a network of songs to compute a
score; we can obtain an improved score between two songs without any other context.
6

One simple way of doing this is with OR Fusion. Given a binary CSM for MFCC
SSMs and another CSM for HPCP, we compute a final binary cross-similarity matrix
which is the union of the two: BF “ BM`BC , where ` is binary OR. This is similar
to the “early fusion” proposed in Foucard et al. (2010) for combining Chroma-based
similarity matrices for melody and accompaniment. With this scheme, if there is a
section of beats that one feature missed but the other matched, then their union will
pick up on it. This way, sections where timbre matches well and sections where pitch
match well will both be matched. The downside is that noise will be incorporated
from both, increasing the chance of false positives, and this problem is compounded
the more features that are fused this way.

6 Note that Chen et al. (2017) refer to similarity network fusion after Smith Waterman as “early
fusion” with respect to rank aggregation, which they call “late fusion,” but we call their technique
“late fusion” because we fuse before Smith Waterman with OR fusion and similarity network fusion,
which is even earlier in the pipeline.

96

SSM

SSM

CSM

CSM

AB

BA

A

B

N

N

M

M

Figure 3.14: A pictorial representation of the SSM that results when concatenating
song B to song A, which we feed to similarity network fusion for early fusion of low
level features.

3.3.4 Early Similarity Network Fusion

A more sophisticated technique for early fusion is to apply similarity network fusion
on the cross-similarity matrices obtained from two or more different feature sets
before creating a binary CSM and sending it off to Smith Waterman. This can be
thought of as a type of metric learning between all of the blocks which incorporates
information from different modalities. The problem with a direct application of
similarity network fusion is that it operates on SSMs. To make it so that CSMs fit
into the framework, we create a “parent SSM” for each feature set that holds both
SSMs and the CSM for that feature set. In particular, given song A with M blocks
in a particular feature set and song B with N blocks in that feature set, form the
SSM DAB which is the SSM that results after concatenating song B to the end of
song A. Let the SSM for song A be DA, the SSM for song B be DB, and the CSM
between them be CAB. Then DAB can be split into four parts as follows (assuming
zero-indexing)

DABpi, jq “

$

’

’

&

’

’

%

DApi, jq i ăM, j ăM
DBpi´M, j ´Mq i ą“M, j ą“M
CABpi, j ´Mq i ăM, j ą“M

CBApi´M, jq “ CT
ABpj, i´Mq i ą“M, j ăM

,

/

/

.

/

/

-

(3.4)

Figure 3.14 shows this pictorially. Given such a matrix for each feature set, we
could then run similarity network fusion and extract the cross-similarity sub-matrix
at the end. The issue with this is the dynamic range of the SSM may be quite
different from the dynamic range of the CSM, as it is likely that blocks in song A
are much more similar to other blocks in song A than they are to blocks in B. To
mitigate this, given a nearest neighbor threshold κ for the CSM, we compute the
adaptive Gaussian kernel thresholds σij (Equation 2.43) individually for DA, DB,
and CSMAB, and we put them together in the final kernel matrix WAB according
to Figure 3.14. Once we have such a matrix WAB for each feature set, we can

97

Figure 3.15: An example of early similarity network fusion on blocks of MFCC
SSMs and blocks of HPCP features on the song “Before You Accuse Me” with ver-
sions by Eric Clapton and Creedence Clearwater Revival. The block size is 20, and
there are three iterations of similarity network fusion with κ “ 0.1. The kernels WAB

are shown for each, and the CSM portion is highlighted with a blue box. The final
fused probability matrix P returned from similarity network fusion is shown in the
upper right. The corresponding CSM portions for all three matrices shown for each
on the bottom. Notice how in the fused probability matrix, the diagonal regions are
much crisper and more distinct from the background than they are in the original
two.

finally perform similarity network fusion. At the end, we will end up with a fused
probability matrix P , from which we can extract the cross-probability PCAB . If we
take the matrix C 1AB “ e´PCAB (or any other monotonically decreasing function), we
can then perform mutual nearest neighbors to turn C 1AB into a binary matrix and
perform Smith Waterman as normal. Figure 3.15 shows an example of constructed
matrices WAB and the resulting fused probabilities P .

One advantage of this technique is that since the CSM and SSMs are treated
together, any recurrent structure which exists in the SSMs can reinforce otherwise
weaker structure in the CSMs during the diffusion process. This can potentially help
to strengthen weaker beat matches in an otherwise well-matching section, leading to

98

longer uninterrupted diagonals in the resulting binary CSM.

3.3.5 Early Fusion Examples

Before we launch into a more comprehensive experiment, we show a few examples
of OR Fusion and early similarity network fusion to illustrate the value added. In
addition to MFCC SSMs and HPCP blocks, we also compute features for the raw
MFCC which has been Z-normalized per block, so we do a 3 way fusion. In each
example, we used 20-beat blocks, κ “ 0.1 for both similarity fusion and binary
nearest neighbors, and 3 iterations of similarity network fusion. Figure 3.16 shows
an example where the three individual features are rather poor by themselves, but
where they happen to all pick up on similarities in complementary regions. As a
result, both OR Fusion and early similarity network fusion do a fantastic job fusing
the features. Figure 3.17 and Figure 3.18 both show examples where MFCC SSMs
happen to do better than HPCP, but where the results fusing both are still better
than each individually. As we will show, by itself, HPCP generally works better than
any MFCC-based feature, but we wanted to highlight here a couple of examples where
the reverse is true.

3.4 Results

3.4.1 Covers 80 Dataset

To benchmark our algorithm, we apply it to the standard “Covers 80” dataset Ellis
(2007c), which consists of 80 sets of two versions of the same song, most of which are
pop songs from the past three decades. The songs are split into two disjoint subsets
A and B, each with exactly one version of every pair. To benchmark our algorithm
on this dataset, we follow the scheme in Ellis (2006) and Ellis and Cotton (2007).
That is, given a song from set A, compute the Smith Waterman score from all songs
from set B and declare the cover song to be the one with the maximum score. Note
that a random classifier would only get 1/80 in this scheme.

To get a better idea of the performance, we also compute the mean rank (MR),
median rank (MDR), mean reciprocal rank (MRR), and the number of songs correctly
identified past a certain number. All of these statistics are computed on the full set
of 160 songs, which is more difficult and more prone to confusion than simply looking
in set A or set B.

In general, we found that the nearest neighbor fraction κ and the dimension of
the SSM image have very little effect, which is encouraging from the standpoint of
robustness. Increasing the number of beats per block has a positive effect on the
performance until the mid 20s. There is an inherent tradeoff in choosing a longer
window size. As we will show in Section 4.4.2 (Figure 4.14), a longer delay has the
effect of promoting diagonals, which will lead to a higher Smith Waterman score,

99

Figure 3.16: “All Tomorrow’s Parties” by Japan and Velvet Underground.

100

Figure 3.17: “Before You Accuse Me” by Eric Clapton and Creedence Clearwater
Revival 101

Figure 3.18: “Time” by Tom Waits and Tori Amos

102

but this could also increase false positives. In the end, we settle on κ “ 0.1, B “ 20
beats per block, and an SSM dimension of 50ˆ 50 pixels.

MFCC-Based Scores

Table 3.1: The result of blocked MFCC features and block MFCC SSM features on
the Covers 80 dataset. We show here the importance of a longer window length and
Z-normalization.

MR MRR MDR Top-1 Top-25 Top-50 Top-100 Score
SSM 15.14 0.615 1 91 130 144 155 48/80
SSM Win 1024 33.75 0.387 14.5 53 95 117 142 29/80
MFCC 29.71 0.538 2 79 108 122 142 42/80
MFCC Win 1024 33.86 0.44 7 62 103 116 135 33/80
MFCC No Norm 47.53 0.232 37.5 30 67 96 133 16/80
MFCC No Norm

Win 1024
56.29 0.146 49.5 15 54 81 128 11/80

Table 3.1 shows the results of MFCC-based features on the Covers 80 dataset. To
show the added value of using SSMs and normalization, we also report results with
MFCC only (in blocks), with and without normalization. We also show the positive
effect of having an MFCC window size that’s equal to the beat length, rather than
a more standard window size of 1024 samples (23 ms at 44100hz). Surprisingly, we
obtain a score of 42/80 just by blocking and normalizing the MFCCs. This shows
the power of having stacked delay MFCCs and of normalizing within each block
to cut down on drift. Even without normalization and a suboptimal window size,
the MFCCs still get 11/80. Overall, though, the SSM-based technique is the clear
winner.

Chroma-Based Scores

Table 3.2: The result of blocked Chroma features on the Covers 80 dataset. Our
results agree with the consensus in the literature that HPCP is the best variant of
Chroma for cover songs, but we are able to get away with only 12 bins.

MR MRR MDR Top-01 Top-25 Top-50 Top-100 Score
CENS 37.04 0.411 10.5 59 94 110 137 31/80
HPCP 12 16.14 0.669 1 100 130 140 150 52/80
HPCP 36 17.58 0.665 1 99 128 138 149 51/80

To put MFCC-based approaches in context, we also report results for Chroma-
based features by themselves. Also, to verify that HPCP is the right choice, we

103

compare to another Chroma feature known as “Chroma-Energy Normalized Fea-
tures” (CENS) (Müller and Ewert (2011)). Table 3.2 shows the results. Each test
was run with 20 beats per block and 2 chroma windows per beat. The results are
slightly better than SSMs + MFCCs, but not appreciably.

Fusion Results

Table 3.3: The result of late similarity network fusion on different feature sets on the
Covers 80 dataset. MFCC SSMs + HPCP are better than either one alone. Also,
MFCCs + SSMs fused with raw MFCCs improves results appreciably over either
alone, suggesting that SSMs are picking up on useful relative information even when
the absolute timbre is changing.

MR MRR MDR Top-01 Top-25 Top-50 Top-100 Score
SSMs/HPCP 8.53 0.793 1 122 146 151 156 61/80
SSMs/MFCC 13.96 0.7 1 107 132 142 155 55/80
HPCP to Self 16.71 0.7 1 107 131 138 150 54/80
SSMs to Self 15.28 0.632 1 93 133 139 153 47/80

Table 3.4: The result of Early OR Fusion on different feature sets on the Covers 80
dataset. Results are improvements over the individual feature sets.

MR MRR MDR Top-01 Top-25 Top-50 Top-100 Score
HPCP/MFCC/
SSMs, κ “ 0.1

9.75 0.739 1 111 141 152 156 59/80

HPCP/SSMs
κ “ 0.1

11.82 0.738 1 112 142 145 154 58/80

HPCP/SSMs
κ “ 0.05

9.67 0.758 1 115 139 148 158 59/80

We have now approached the grand finale of this work: feature fusion. Table 3.3
shows the results of using late similarity network fusion after computing Smith Wa-
terman scores. This improves the results over all of the features taken alone, which is
encouraging since it is such a simple approach. In particular, MFCC-based features
and HPCP are clearly complementary, as are raw MFCC features and SSM-based
MFCC features, which shows that the SSMs are adding value. As a sanity check,
we also did late similarity network fusion fusion on features to themselves (i.e. ordi-
nary diffusion), which improved HPCP slightly but not appreciably, and which left
MFCC the same, making it clear that the real value in these techniques is combining
features with complementary information.

Table 3.4 shows the result of applying early OR Fusion. The results are improved,
but overall they are similar to the late similarity network fusion results.

104

Table 3.5: The result of Early Similarity Network Fusion on different feature sets
for the Covers 80 dataset. These are by far the best result, and in fact they appear
to reach state of the art. When only two features are involved, similarity network
fusion appears to only need a few iterations until converging to a good result. When
three feature sets are involved, more iterations are likely needed, though the mean
rank is the lowest out of all of the experiments in this case.

MR MRR MDR Top-01 Top-25 Top-50 Top-100 Covers80
HPCP/SSMs

10 Iters
7.74 0.845 1 131 147 152 155 68/80

HPCP/SSMs
5 Iters

7.76 0.846 1 131 147 152 155 68/80

HPCP/SSMs
3 Iters

7.52 0.849 1 131 150 152 155 68/80

HPCP/SSMs
/MFCCs, 3 Iters

6 0.805 1 120 149 153 159 63/80

HPCP/SSMs
/MFCCs, 3 Iters

6 0.805 1 120 149 153 159 63/80

Finally, Table 3.5 shows the early similarity network fusion results. These are by
far the best results, and they appear to be state of the art, as a very recent work
by Chen et al. (2017) using late similarity network fusion on Chroma-based features
reported a Top10 score of 114 and a MRR of 0.625. By contrast, we report 131 songs
in the Top 01 (nearly all songs were correctly identified) and a MRR of 0.845 with
our early similarity network fusion technique on HPCP + MFCC SSMs.

3.4.2 “Blurred Lines” Music Copyright Controversy

In addition to the Covers 80 benchmark, we apply our cover songs score to a recent
popular music controversy, the “Blurred Lines” controversy Miao and Grimm (2013).
Marvin Gaye’s estate argues that Robin Thicke’s recent pop song “Blurred Lines” is
a copyright infringement of Gaye’s “Got To Give It Up.” Though the note sequences
differ between the two songs, ruling out any chance of a high Chroma-based score,
Robin Thicke has said that his song was meant to “evoke an era” (Marvin Gaye’s
era) and that he derived significant inspiration from “Got To Give It Up” specifically
(Miao and Grimm (2013)). Without making a statement about any legal implica-
tions, we note that our timbral shape-based score between “Blurred Lines” and “Got
To Give It Up” is in the 99.9th percentile of all scores between songs in group A and
group B in the Covers 80 dataset, for κ “ 0.1, B “ 14, and d “ 200. Unsurprisingly,
when comparing “Blurred Lines” with all other songs in the Covers 80 database plus
“Got To Give It Up,” “Got To Give It Up” was the highest ranked. For reference,
binary cross similarity matrices are shown in Figure 3.19, both for our timbre shape
based technique and the delay embedding Chroma technique in Serra et al. (2009).

105

(a) Shape-based timbre (b) Chroma delay embedding

Figure 3.19: Corresponding portions of the binary cross-similarity matrix between
Marvin Gaye’s “Got To Give It Up” and Robin Thicke’s “Blurred Lines” for both
shape-based timbre (our technique) and Chroma delay embedding

The timbre-based cross-similarity matrix is densely populated with diagonals, while
the pitch-based one is not.

3.5 Other Geometric Features

Self-similarity matrices describe all of the metric information of a time-ordered point
cloud up to an isometry, but they take up quadratic space in the number of points.
In this section, we explore some one dimensional isometry blind techniques for quan-
tifying the geometry.

3.5.1 Space Curve Curvature/Torsion Scale Space

Velocity, curvature and torsion are time-ordered isometry invariants which can be
stored more compactly. For the case of MFCC descriptors, they are like delta and
delta/delta coefficients, respectively (Furui (1986)), though we have more control
with the use of scale space. As shown in Appendix A, the derivations have assumed
that the given curves are parameterized over a continuous interval. However, in real
data, as with sliding window MFCCs, curves are discretely sampled. By convention,
we index discrete signals with square braces and n

γrns “ pγ1rns, γ2rns, ..., γdrnsq P Rd (3.5)

So that each sample is a vector and each vector component can be viewed as a 1D
discrete time series. If we connect adjacent time samples with line segments to form
piecewise linear curves in Rd, that presents some issues for the above definitions,
because curvature is either zero in the interor of the line segments or undefined at

106

the vertices (since the curve is not C2 there in general). One very simple way to
estimate the curvature vector is to take the negative of the “Discrete Laplacian”
(Section 2.3.1, Taubin (1995)):

e2rns «
1

2
pγrn´ 1s ` γrn` 1sq ´ γrns (3.6)

For this application, though, it isn’t sufficient, because it is too local and far
too susceptible to noise. Instead, we will generalize the “curvature scale space”
(Mokhtarian and Mackworth (1986), Mokhtarian et al. (1996)) from 2D curves to
space curves and derive a similar formula for torsion. The goal is to smooth the
components of the curve with successively wider Gaussians, yielding a multiscale
estimation of curvature. Curvature scale space uses a clever trick that convolving
a discontinuous function with a continuous one yields a continuous function, whose
derivative can then be taken. In particular, define the Gaussian with scale σ as

gσptq “
1

σ
?

2π
exp´t

2{2σ2

(3.7)

then convolving the continuous gσptq with components of γrns, which are discon-
tinuous pulse trains, yields the following

γiσptq “ γirns ˚ gσptq “
N
ÿ

n“0

γirnsgσpt´ nq (3.8)

which is continuous, as promised. Then, by linearity of the derivative:

γ1iσptq “
N
ÿ

n“0

γirnsg
1
σpt´ nq “ γirns ˚ g

1
σptq (3.9)

and in general

γniσptq “ γirns ˚ g
n
σptq (3.10)

Hence, we no longer estimate the derivatives of γptq directly by pairwise differ-
ences; we instead get smoothed estimates by convolving with derivatives of Gaussians
of different widths. In other words, the derivative and convolution by a Gaussian
commute, even for functions which aren’t differentiable. This is a common trick used
in scale space theory, and in this context the Gaussian is referred to as a “mollifying
function.” To obtain the final expressions for curvature, we plug these Gaussian
derivatives into the curvature formulas obtained in Appendix A.

It is worth noting that from the perspective of persistence, there isn’t much
information in the coarser levels of a scale space (Chen and Edelsbrunner (2011)).
However, for the purposes of this work, it is useful to have very slowly varying curves
at the coarse levels. Also, as discussed by Yuille and Poggio (1985), it is possible to
reconstruct functions up to translations from the zero crossings of the scales spaces
of their derivatives, which justifies using all levels.

107

3.5.2 Velocity And Curvature Results

Table 3.6: The results of various combinations of velocity and curvature with each
other and with other features on the Covers 80 dataset.

MR MRR MDR Top-01 Top-25 Top-50 Top-100 Score

Vel σ “ 10 30.53 0.447 7 64 101 121 143 34/80
Vel σ “ 60 37.74 0.346 16 47 90 111 142 25/80
Vel σ “ 100 45.26 0.304 22 39 84 105 130 23/80
Curv σ “ 60 50.96 0.196 44 23 62 87 135 11/80
Vel σ “ 10,

Curvs σ “ 60
28.39 0.452 5.5 62 106 121 148 36/80

Vel σ “ 10,
Vel σ “ 60

28.37 0.498 3.5 72 111 118 144 37/80

Vel σ “ 10,
Vel σ “ 60,

Curvs σ “ 60
28.84 0.49 3 69 109 117 142 38/80

Vel σ “ 10,
Vel σ “ 60
Early SNF

26.64 0.521 2 74 114 126 142 39/80

SSMs,
Vel σ “ 10

15.32 0.614 1 93 128 144 156 48/80

SSMs, MFCCs
Vel σ “ 10

13.19 0.674 1 101 130 145 156 53/80

As with all of our features, we compute curvature and velocity in blocks, and
we create CSMs by comparing all pairs of blocks, which we then feed to Smith
Waterman. We take 400 curvature samples per block, and we try out various levels
of smoothing σ. Table 3.6 shows the results of various combinations of velocity and
curvature with each other and with other features. It is clear that combining different
scales helps, but if we have to choose a scale, smoother is better. Also, it appears
that velocity is more useful than curvature overall7. However, none of these results
beat the SSM results, and combining velocity with SSMs and MFCCs does worse
than the combination of just the two. In spite of our efforts, we take this as a positive
sign, as SSMs are incredibly simple to explain and compute compared to most other
isometry blind features.

7 We also tried experiments with torsion and saw even further diminishing returns

108

3.6 Conclusions And Future Work

In this chapter, we showed that timbral information in the form of MFCC can indeed
be used for cover song identification. Most prior approaches have used Chroma-
based features averaged over intervals. By contrast, we show that an analysis of the
fine relative shape of MFCC features over intervals is another way to achieve good
performance. This opens up the possibility for MFCC to be used in much more
flexible music information retrieval scenarios than traditional audio fingerprinting.
More generally, it is possible that our features are more appropriate for more complex
music than US pop music, where evolution of timbre plays at least as an important
of a role as pitch. The low level fusion described in this chapter may also be of
independent interest for genre independent music structure analysis.

The main drawback of our technique is a strong reliance on beat trackers, since
we do a direct L2 distance on SSMs, meaning they need to be in good alignment. In
practice, beat trackers may not return correct onsets. Our current remedy for this
of using different tempo levels blows up computation by a factor of 9. Also, coming
up with a single beat level is ill-posed, since usually there are metrical hierarchies
(Quinton et al. (2015)). There does seem to be a recent convergence of techniques
for rhythm analysis, however, so hopefully our system could benefit from them as a
black box.

There are also computational drawbacks that still exist in these techniques. We
are reliant on Smith Waterman, which is a quadratic algorithm, and early similarity
network fusion adds another quadratic time complexity algorithm even with sparse
nearest neighbor sets. To address this, we are in the process of implementing GPU
algorithms for ever step of our pipeline, and we hope to apply it to the “Second Hand
Songs Dataset,” which is a subset of the Million Songs Dataset (Bertin-Mahieux et al.
(2011)) with cliques of cover songs.

Finally, we note that there has been similar work in video analysis for detecting
copyright infringement in videos. On Youtube, for instance, some may try to ro-
tate/scale/time warp a video so that it is not detected. The problem of identifying
such copies could be thought of as “cover videos.” Wu et al. (2009) show that com-
puting and analyzing different SSM for all frames in a video clip works to this end,
and Yeh and Cheng (2009) and Bronstein et al. (2010) use Smith Waterman on other
features which are approximately invariant under these transformations. This work
makes us think that perhaps our technique of block windowed SSMs is applicable
beyond music to videos and other sequences. We are particularly interested in 3D
motion sequences.

109

4

Sliding Windows of Periodic Videos

We have now demonstrated the use of geometric descriptors of time series with the
application of cover song identification in 1D time series of audio. In this chapter,
we look at an example of a multivariate time series: video data. We devise a novel
sliding window embedding scheme for videos, and we use it to quantify periodicity
and quasiperiodicity of motion. In the process, a variety of geometric structures
emerge. Periodic time series show up as topological loops, and the roundness of these
loops can be used to score how periodic the video is. Surprisingly, specific cases of
periodic videos with harmonics sometimes show up as the boundary of a Möbius
strip (Section 4.3.3). Finally, quasiperiodic videos fill out a torus, which has been
known for some time, but topological data analysis gives us a leg up on quantifying
that geometry, and we incorporate one of the first known uses of persistent H2 to
this end.

To apply our technique, we show that our ranking of periodic videos agrees with
humans on the Amazon Mechanical Turk (Section 4.5). Finally, in the grand finale
of this chapter, we use the loop, Möbius strip, and torus to automatically tell apart
different types of anomalies in videos of vibrating vocal folds, known as high speed
glottography in Section 4.6.

4.1 Basic Scheme

4.1.1 Sliding Window Videos

Define a continuous video as a function Xptq : R` Ñ RW ˆ RH . That is, a video
time series is a curve in the space of image frames, each of resolution W ˆ H (W
is the width and H is the height). This is a special case of Definition 1. Figure 4.4
shows an example synthetic periodic video of a pendulum, which we will use as a
prototypical periodic video throughout.

110

S(t)=

X(t)

.

.

.

Tim
e

M

X(t+1)

X(t+2)

X(t+M)

X(t)

X(t+M)

X(t+1)

Figure 4.1: A depiction of the sliding window scheme for SM,1 (τ “ 1). Each
window holds a stack of frames, and each pixel within each frame is a dimension in
a high dimensional Euclidean space. Sliding the window forward in time traces out
a trajectory in that space.

We now look at the sliding window of a video time series, following (Definition 3):

SM,τ pXptqq “

»

—

—

—

–

Xptq
Xpt` τq

...
Xpt`Mτq

fi

ffi

ffi

ffi

fl

P RWˆHˆpM`1q (4.1)

This can be viewed as the concatenation of the delay embeddings of each indi-
vidual pixel in the video into one large vector. Figure 4.1 shows a visual depiction
of this scheme for τ “ 1. This fits within our general definition of sliding windows
for time series (Definition 3), but to our knowledge, this is a unique approach to
studying video dynamics. Note that sliding windows are traditionally applied to 1D
time series, which can be viewed as 1-pixel videos (W “ H “ 1) in this framework.
Finally, since the pixel measurement locations are fixed, it is an “Eulerian” view into
the dynamics of the video.

Derivative Filtering

To attempt to mitigate nonlinear drift, we implement a simple pixel-wise convolution
by the derivative of a Gaussian for each pixel Xiptq in the original video before
applying the delay embedding:

Xiptq “ Xiptq ˚ ´at exp´t
2{p2σ2q (4.2)

111

This is a pixel-wise bandpass filter which could be replaced with any other band-
pass filter leveraging application specific knowledge of expected frequency bounds.

4.1.2 Geometry of Sliding Window Videos

Though it may seem daunting compared to the 1D case, the geometry of the sliding
window embedding shares many similarities for periodic videos, as shown in Tralie
(2016). To see this, consider an example video that contains a set of K frequencies
ω1, ω2, ..., ωK . Let the amplitude of the kth frequency and ith pixel be aik. For
simplicity, assume that each is a cosine with a zero phase offset (this simplifies the
math without loss of generality). Then the time series at pixel i can be written as

Xiptq “
K
ÿ

k“1

aik cospωktq (4.3)

Grouping all of the coefficients together into a pW ˆHq ˆN matrix A, the time
series for the whole video can be written as

Xptq “
K
ÿ

k“1

Akcospωktq (4.4)

where Ak stands for the kth column of A. Now, we construct a sliding window
embedding as in Equation 4.1 for SptqM,τ :

SptqM,τ “

K
ÿ

k“1

»

—

—

—

–

Ak cospωktq
Ak cospωkpt` τqq

...
Ak cospωkpt`Mτq

fi

ffi

ffi

ffi

fl

(4.5)

applying the cosine sum identity, we get

SptqM,τ “

K
ÿ

k“1

»

—

—

—

–

Ak

Ak cospωkτq
...

Ak cospωkMτq

fi

ffi

ffi

ffi

fl

cospωktq´

»

—

—

—

–

0k

Ak sinpωkτq
...

Ak sinpωkMτq

fi

ffi

ffi

ffi

fl

sinpωktq

(4.6)

Or written more succinctly

SptqM,τ “

K
ÿ

k“1

uk cospωktq ´ vk sinpωktq (4.7)

112

X

t

Figure 4.2: XT slices of the principal components on SM,1 for the synthetic video
of an oscillating pendulum. The black line shows the x slice which is taken. The
window size is chosen just under the period length, so the sine and cosine components
of each harmonic are perpendicular. Hence, the principal components in each row
correspond to the two axes of an independent ellipse in the delay embedding.

X

t

Figure 4.3: XT slices of the principal components of SM,1 on a video of a beating
heart. Parameters are chosen as in Figure 4.2.

where uk,vk P RpM`1qˆWˆH . In other words, the sliding window embedding is
the sum of linearly independent ellipses, but this time in the space of M ` 1 frame
videos at resolution W ˆ H. This is another way to see that the sliding window
embedding of periodic signals lives on a hypertorus without using Takens’ Delay
Theorem directly, as in Section 2.2.2. The presence of the linearly independent sine
and cosine terms also explains why two dimensions are needed for each periodic
component. As shown in Perea and Harer (2015), when the window length is just
under the length of the period, all of the uk and vk vectors become orthogonal, and
so they can be recovered by doing PCA on SptqM,τ . Figure 4.2 shows the components
of the first 8 PCA vectors for a horizontal line of pixels in a video of the synthetic
pendulum with this setup. Note how the oscillations are present in time in the frames
of the principcal components, as suggested by Equation 4.6. Similarly, Figure 4.3
shows the same for a video animation of a beating heart.

113

4.2 Prior Work in Periodic Videos

We now review some of the prior art on detecting and quantifying periodicities
in videos, primarily in the computer vision literature. We hope both to create a
taxonomy of techniques and to show the diverse array of applications that motivate
the study of periodic videos. Later in Section 4.6, we will look more at prior work
on quasiperiodic videos.

4.2.1 1D Surrogate Signals

One common strategy to quantify periodicity in videos is to derive a 1D function
to act as a surrogate for the dynamics of the video, and then to use either fre-
quency domain (Fourier) or time domain (autocorrelation, peak finding) techniques
for quantifying periodicity of the resulting 1D signal.

One of the earliest works in this genre finds level set surfaces in a spatiotem-
poral “XYT” volume of video (all frames stacked on top of each other), and then
uses curvature scale space on curves that live on these “spatiotemporal surfaces” as
the 1D function (Allmen and Dyer (1990)). Polana and Nelson (1997) use Fourier
Transforms on pixels which exhibit motion, and define a measure of periodicity based
on the energy around the Fourier peak and its harmonics. Goldenberg et al. (2005)
extract contours and find eigenshapes from the contours to classify and parameterize
motion within a period. Frequency estimation is done by using Fourier analysis and
peak finding on top of different 1D statistics derived from the contours, such as area
and center of mass. In a similar approach, Ghaderian et al. (2011) perform fore-
ground object segmentation and boundary contour finding, and create 4 1D signals
which are the average distances of the points on the contour boundary to the 4 edges
of a bounding box around the tracked blob. They then do autocorrelation on these
signals to determine whether the underlying motion is periodic. Wehbe et al. (2015)
turn the video into a 1D time series by simply averaging the intensity over all pixels
in each frame, and they then apply the “YIN” autocorrelation method for fundamen-
tal frequency estimation, which came out of a long line of work in the audio analysis
community (De Cheveigné and Kawahara (2002)). Finally, Yang et al. (2016) derive
a 1D surrogate function based on mutual information between the first frame and
subsequent frames, and then they look for peaks in the similarity function, with the
help of a watershed method.

4.2.2 Self-Similarity Matrices

Another class of techniques relies on analyzing self-similarity matrices (SSMs) be-
tween frames, where similarity can be defined in a variety of ways. Seitz and Dyer
(1997) track a set of points on a foreground object and compare them with an affine
invariant similarity. They then extract so-called “period traces” of different orders
k, which are functions that estimate the instantaneous “k-period” (length of the
next k cycles) at frames in the video, and which can be extracted with snakes along

114

Time

Figure 4.4: An animation of a periodic swinging pendulum. This is a simple
example with mirror symmetry in its period which we will use throughout this work.

Figure 4.5: The method of Cutler and Davis (2000) on the pendulum video. The
peak PSD frequency is above two times the standard deviation above the mean (green
line, center figure). The maxes (green points) on the 2D autocorrelation of the SSM
lie on a diamond shape pattern.

near-diagonal paths in a SSM. They then score these functions corresponding to a
true cycle or not using the Kolmogorov-Smirinov test.

Another widely recognized technique for periodicity quantification by Cutler and
Davis (2000) derives periodicity measures based on self-similarity matrices of L1

pixel differences between all pairs of frames in a foreground video which have been
lowpassed and resized to be in correspondence with each other. This technique has
inspired a diverse array of applications, including analyzing the cycles of expanding/-
contracting jellyfish (Plotnik and Rock (2002)), analyzing bat wings (Atanbori et al.
(2013)), and analyzing videos of autistic spectrum children performing characteristic
repetitive motions such as “hand flapping” (Kumdee and Ritthipravat (2015)). We
now go into detail on this technique, since we will be comparing ours to it in Sec-
tion 4.5. We use two videos as examples. Figure 4.4 shows a video of an oscillating
pendulum, which has mirror symmetry in the second half of its period. That is,

115

Time

Figure 4.6: An animation of a periodic video of a running dog, which does not
have mirror symmetry in the second half of its period.

Figure 4.7: The method of Cutler and Davis (2000) on the video of a running
dog. The peak PSD frequency is above two times the standard deviation above
the mean. The maxes (green points) of the 2D autocorrelation of the SSM lie on a
square pattern, since there is no symmetry. However, there are also spurious points
along the diagonal (orange points), which can happen due to numerical instability for
finding maxes along diagonal lines with a near constant max value (i.e. non-isolated
critical points).

fptq “ fpT ´ tq, where T is the period. Based on the way the frames are arranged
in Figure 4.4, this is equivalent to saying that the frames in the top row match the
frames in the bottom row, or the video does the same thing “going there” as “on the
way back.” By contrast, as shown in Figure 4.6, a running dog does not have mirror
symmetry in its period. These observations were central to the work in Cutler and
Davis (2000), whose primary application domain was surveillance videos of residen-
tial areas, in which a walking person has approximate mirror symmetry a running
dog does not.

Figure 4.5 shows the technique of Cutler and Davis (2000) on the mirror symmet-
ric pendulum, and Figure 4.7 shows their technique on the running dog. There are
two different ways they quantify periodicity from a self-similarity matrix. The first
is a frequency domain technique, where they compute the power spectral density
of each column (row) of the SSM after linearly de-trending and applying a Hann
window. They then take the average power spectral density and compute its peak.

116

If the peak is more than twice the standard deviation above the mean across the
power spectrum, then they deem the video periodic. As the authors warn, and as
we show in Section 4.5, this method has a high susceptibility to false positives. This
motivated the design of a more robust technique in Cutler and Davis (2000), which
is actually a time domain technique. It works by finding peaks in the 2D normalized
autocorrelation of the SSMs, which have been Gaussian smoothed. For videos with
mirror symmetry, the peaks will lie on a diamond lattice (Figure 4.4), while for videos
without mirror symmetry, they will lie on a square lattice (Figure 4.6). After peak
finding within neighborhoods, one simply searches over all possible lattices at all
possible widths to find the best match with the peaks. Since each lattice is centered
at the autocorrelation point p0, 0q, no translational checks are necessary. We will
give more details on an objective function for ranking periodicity with this technique
in Section 4.5.

4.2.3 Miscellaneous Techniques for Periodic Video Quantification

There are also a number of works that don’t fall into the two categories above. Some
works focus solely on walking humans. Niyogi et al. (1994) look at the “braiding
patterns” that occur in XYT slices of videos of walking people. Huang et al. (2016)
perform blob tracking on foreground of walking person, and use ratio of second
eigenvalue to first eigenvalue of PCA on that blob. A smoothed version of this has
maxes twice during each period during what they call “lambda frames,” when either
the left or right foot is sticking out in front. Assuming the person is walking in
a straight line, they show how to use walking trajectory estimates to do camera
calibration.

For more general periodic videos, Wang et al. (2009) make a codebook of visual
words and look for repetitions within the string that they get from their visual
alphabet. Levy and Wolf (2015) take a deep learning approach to counting the
number of periods that occur in a video segment. They use a 3D convolutional
neural network on spatially downsampled, non-sequential regions of interest, which
are uniformly spaced in time (sliding window with τ ą 1), to estimate the length of
the cycle. Interestingly, they are able to train these networks on fully synthetic videos
of low frequency patterns moving against a white noise background. Finally, perhaps
the most philosophically similar work to ours is the work of Vejdemo-Johansson
et al. (2015), who use cohomology to find maps of MOCAP data to the circle for
parameterizing periodic motions, though this work does not use delay embeddings
or provide a way to quantify how periodic something is.

4.2.4 Our Work

While most of the works we surveyed so far address the problem of period finding in
videos, we are not aware of any works which take an explicitly geometric perspective
to this problem like ours. Geometry gives us a nice way to quantify periodicity by

117

measuring the roundness of sliding window embeddings, as shown in Section 4.5.
Crucially, it also gives us a way to measure quasiperiodicity using topology, which is
not at all obvious with standard techniques. As we show in Section 4.6, this simplifies
the pipeline for detecting anomalies in vocal cord videos.

We also note that, unlike Cutler and Davis (2000), in our sliding window scheme,
there is no need to distinguish between videos with and without mirror symme-
try. This is because, as shown in Figure 4.5, adding the delay frames destroys the
symmetry and turns a path-like embedding into a loop embedding, if the window
length is close to the length of the period. In other words, the state space is able to
uniquely represent all phases in the period with an adequate delay. This is a crucial
preprocessing step for us, since we use measures of roundness of our embedding to
measure periodicity, and videos with mirror symmetry do not form a loop. Of course,
we can no longer differentiate between videos with and without mirror symmetry,
but we have a unified framework for quantifying periodicity, and we can also address
quasiperiodicity. In this way, our work is complementary to Cutler and Davis (2000).

Finally, in contrast to both frequency and time domain techniques, our method
does not care if the period is an integer number of samples.

4.3 Theoretical Analysis of Eulerian Periodic Videos

In this section, we explore theoretically the geometry generated from the type of
sliding window embeddings we have defined. The fact that we are using Eulerian
coordinates, or measurement locations which don’t change and which witness phe-
nomena passing back and forth, rather than tracking the motion, has a crucial impact
on the resulting shapes.

4.3.1 Basic Model with Mirror Symmetry

We now introduce a basic model of periodic videos. First, define the following terms.

• Define a fixed radian frequency ω P R` and a fixed phase shift φ P R

• Let I be some indexing set into the N pixels of a video frame Xptq, and let
Xiptq, i P I, be a 1-parameter function describing how a pixel at location i
evolves in time

• Let giptq be an arbitrary 1D function associated with pixel i

• Let A be a constant associated with amplitude of oscillation.

Given all of this, the model for motion is that Xiptq take the form

Xiptq “ gi

ˆ

A cos

ˆ

2π

T
n` φ

˙˙

(4.8)

118

Figure 4.8: An example of an Eulerian pixel witnessing a foreground/background
transition in a video of a woman doing jumping jacks. Red, green, and blue channels
are plotted over time. These transitions induce a per pixel periodic signal with sharp
transitions, which leads to lots of harmonic axes in the sliding window embedding.

In other words, each pixel is an arbitrary function composed with a scale of the
same cosine. This allows our model to encompass non-sinusoidal repetitions at each
pixel. In general, though the shape of the function at each pixel may be different,
the functions across all pixels are globally in phase under this model. To see that
this is a reasonable model, consider the example of a 1D video of length A`B with
amplitude of oscillation A. In terms of the model above, define the following:

giptq “ rectB

ˆ

t´ i`
A`B

2

˙

(4.9)

where

rectBptq “

"

1 |t| ă B
2

0 otherwise

*

(4.10)

Now let Xiptq “ gipA cosptqq. This simulates a 1D solid line segment of length B
oscillating left and right over a range of A in tune with a cosine, which is a simplified
model of the kind of motion present in the pendulum video and many other natural
videos where a solid object moves back and forth, but at the pixel level a pixel
i measuring the foreground can suddenly jump to the background and then back
again (Figure 4.8 shows an example in a real video). Figure 4.9 shows an example
of the oscillating bar with A “ 100, B “ 60, and T “ 50. Each column of the image

119

0 20 40 60 80 100120140
Pixel Index i

0

50

100

150

200

T
im

e
 t

Oscillating Line Segment Raw Embedding 2D PCA T-length Embedding 2D PCA

Figure 4.9: A synthetic 1D video of an oscillating line segment of length B oscil-
lating over a range A. This can be described by the model put forth in this paper
as giptq “ rectB

`

t´ i` A`B
2

˘

. In this example A “ 100, B “ 60, T “ 50, and
φ “ 0. The video is shown going through 4 periods. The center plot shows PCA of
the raw embedding, and the right plot shows PCA of a sliding window embedding.
Points that correspond to the first half of a period are drawn in red, while points
that belong to the second half of a period are drawn in blue (noise was intentionally
added to the center plot because some points directly coincide in the sampling). A
green circle is drawn over the point corresponding to the beginning of the period,
and a magenta circle is drawn over the point halfway through the period.

on the left shows Xiptq for a fixed i. Note the similarity of this simulated example
to the pendulum example in Figure 4.14.

One immediate observation is that there is mirror symmetry built into this model;
that is

Xiptq “ Xi

ˆ

T ´

ˆ

t` φ
T

π

˙˙

(4.11)

In other words, each pixel repeats itself during the second half of its period, but
in reverse. This means that a raw embedding (sliding window size of 1) traces out a
topological path between two states Xa and Xb. During the first half of the period,
the path goes between Xa and Xb, and during the second half of the period it follows
the exact same path but in reverse from Xb to Xa. The middle column in Figure 4.9
shows PCA on this path, where Xa is drawn in green and Xb is drawn in magenta,
points on the path from Xa to Xb are drawn in red, and points on the path from Xb

to Xa are drawn in blue. They overlapped each other, so noise had to be added to
see both red and blue points in some regions.

On the other hand, a sliding window size of appropriate length can turn this path
into a loop by taking a different trajectory from Xb to Xa than was taken from Xa

to Xb, as can be seen in column 3 of Figure 4.9. A similar observation was made and

120

exploited in early work on video textures to properly capture the dynamics of videos
being used as templates (Schödl et al. (2000)). Another way of saying this is, even
though there are orders of magnitude more measurements than there would be in a
1D time series, they don’t always jointly disambiguate states, so a frame by frame
embedding without delay can still collapse parts of the state space.

4.3.2 The High Dimensional Geometry of Repeated Pulses

Even though our model is a composed function of a pure cosine, the loop that’s
formed is a topological loop whose geometry is much more complicated than a 2D
ellipse that appears from a single cosine, as hinted at in Figure 4.2 and Figure 4.3.
To see why, examine the Fourier transform of one of the pixels. First extract one
pulse

fiptq “

"

Xiptq 0 ď t ď T
0 otherwise

*

(4.12)

Then Xiptq can be rewritten in terms of the pulse as

Xiptq “
8
ÿ

m“´8

fipt´mT q (4.13)

Since Xiptq repeats itself, regardless of what fiptq looks like 1, periodic summation
discretizes the frequency domain (Pinsky (2002))

F tXiptqu pkq9
8
ÿ

m“´8

Fpfiptqq
´m

T

¯

δ
´m

T
´ k

¯

(4.14)

Switching back to the time domain, we can write Xiptq as

Xiptq9
8
ÿ

m“´8

F pfiptqq
´m

T

¯

ei
2πm
T

t (4.15)

In other words, each pixel is the sum of some DC offset plus a (possibly infinite)
set of harmonics at integer multiples of 1

T
. For instance, applying Equation 4.15 to

a square wave of period T centered at the origin is a roundabout way of deriving the
Fourier series

sin

ˆ

2π

T
t

˙

`
1

3
sin

ˆ

6π

T
t

˙

`
1

5
sin

ˆ

10π

T
t

˙

` . . . (4.16)

by sampling the sinc function sinpπTfq{pπfq at intervals of m{2T (every odd
m coincides with π{2 ` kπ, proportional to 1{k, and every even harmonic is zero
conciding with πk). In general, the sharper the transitions are in Xiptq, the longer

1 Note that periodic summation is more general than pulses which have mirror symmetry

121

Figure 4.10: The persistence diagrams of sliding window embeddings of gptq “
cosptq ` 2 cosp2tq differ for different field coefficients, while they are the same for
fptq “ 2 cosptq ` cosp2tq, as shown by Perea and Harer (2015). The former has an
SSM with alternating magnitude stripes, while the latter has an SSM with constant
valued stripes.

the tail of Ftfiptqu will be, and the more high frequency harmonics will exist in the
embedding, calling for a higher delay dimension to fully capture the geometry, since
every harmonic lives on a linearly independent ellipse. Similar observations about
harmonics have been made in images for collections of patches around sharp edges
(Yu et al. (2012), Figure 2).

4.3.3 The Möbius Strip Geometry of Harmonic Repeated Pulses

In addition to the harmonics that occur for every periodic signal with sharp tran-
sitions in Eulerian sliding window videos, there is also a special type of twisted
geometry that occurs when there are harmonics of motion in the video itself. Perea
and Harer (2015) first discovered the following fact about persistence diagrams of
sliding window embeddings of signals with a harmonic at twice the base frequency:

Lemma 6. The persistence diagrams of sliding window embeddings of dimension ě 4
of fptq “ a cosptq ` b cosp2tq differ for Z2 and Z3 coefficients if and only if b ą a.

Figure 4.10 shows an example with f2ptq “ cosptq` 2 cosp2tq. As with the sliding
window embedding of any periodic signal, the sliding window embedding f2ptq lives
on a hypertorus. In fact, it is isometric to the trajectory eit ` 2e2it P C2 on the flat
torus in R4 with the right sliding window parameters. A similar phenomenon occurs
for the following trajectory on the 1-2 torus knot embedded in R3

122

Figure 4.11: The sliding window embedding of gptq “ cosptq ` 2 cosp2tq can be
identified with a 1-2 torus knot, which bounds a Möbius strip.

T12ptq “

»

–

p2` cosptqq cosp2tq
p2` cosptqq sinp2tq

sinptq

fi

fl (4.17)

As shown in Figure 4.11, this curve is the boundary of a Möbius strip that
lives inside of the torus. There is one homology class on the filled in Möbius strip
which is homologous to its boundary using Z3 coefficients, since there is a homotopy
between the Möbius strip and its boundary (Hatcher (2002)). This means that there
is only ever one strongly persistent homology class with Z3 coefficients for a Möbius
strip boundary. With Z2 coefficients, on the other hand, these two classes are not
homologous. This means that the first class dies early and there is a second class
that is born later. As can be seen in Figure 4.10, the one class that remains with Z3

coefficients has the same birth time as the class that’s born first with Z2 coefficients
and the same death time as the class that dies last. It is for this reason that Perea
and Harer (2015) always use the Z3 persistence diagram to score periodicity.

In our sliding window videos, we have a similar phenomenon that can happen, but
the amplitude ratios of the harmonics giving rise to the Möbius strip boundary differ.
To see how this works, we first note one key property of a Möbius strip boundary
T12 parameterized on an interval t “ r0, T s by Equation 4.17

123

0 π

2π, 0π

d

t

t+π

Figure 4.12: The principal rectangle of the Möbius strip, with the boundary drawn
in blue (it jumps from the lower right corner to the upper right corner of this diagram
because of the twist). A uniform Möbius strip has the property that ||Xptq´Xpt`
πq||2 is a constant d.

||T12ptq ´ T12pt´ T {2q||2 “ ||T12psq ´ T12ps´ T {2q||2 “ d, @s, t P R (4.18)

In other words, a parameterized loop r0, 2πs Ñ γptq having the property that
every point on the loop has a constant distance d to a point π away is a candidate
for a loop that bounds a Möbius strip, and d is the width of said Möbius strip, as
shown in Figure 4.12 2. For the sliding window videos, the geometry is in much higher
dimensions and is difficult to visualize, but we simply check that the distances satisfy
this property. To do this, we consider a simple model of harmonics at an Eulerian
pixel time series that consists of thin Gaussian pulses, which model the smoothed
derivative magnitudes of sharp transitions in videos (Equation 4.2)

hσptq “
8
ÿ

k“´8

ae´pt´kT q
2{p2σ2q

` be´pt´kT {2q
2{p2σ2q (4.19)

Figure 4.13 shows three different examples of these signals for the ratios b{a “
1{2, 1, 2. It is indeed the case that the sliding window embeddings line up at a
local min distance of T {2 when the smaller pulses are aligned with the larger pulses.
This leads to diagonal stripes of alternating magnitude, where the second stripe,
corresponding to this local min distance, is always larger than the primary diagonal.
Unlike the pure sinusoidal case, however, this geometry can show up at a variety of
ratios b{a, not just b{a ą 1, which is useful if we want to simply answer the question
of whether or not there is a harmonic present.

2 It can be readily verified using trig identities that d “ 2 is the width of the Möbius strip whose
boundary is parameterized by Equation 4.17

124

Figure 4.13: Normalized sliding window embeddings of Gaussian harmonic pulses
h2ptq and T “ 40, for different ratios between the harmonic and base frequency
magnitude. Alternating diagonal stripes are visible in this SSMs in all cases.

4.4 Practical Issues in Sliding Window Videos

Now that we have set the stage for our work, we are ready to discuss some of the
technical aspects of sliding window videos in more detail.

4.4.1 Reducing Memory Requirements with SVD

One potential drawback of the scheme that we have devised is the memory require-
ment and ensuing computational burden to construct and access the memory. Sup-
pose we have a video which has been discretely sampled at N different frames at a
resolution of W ˆH, and we do a delay embedding with M `1 frames. Assuming 32

125

bit floats per grayscale value, and τ “ 1, this will take up 4WHNpM `1q bytes. For
instance, for a low resolution 200 ˆ 200 video that is only 10 seconds long at 30fps,
using a dimension of 30, this already exceeds 1GB of memory.

In our applications, however, we only need the pairwise distances between dif-
ferent delay vectors, which enables a few optimizations. First of all, for N points
in RWH , where N ! WH, the N points span a N ´ 1 flat. This means that we
can come up with a Euclidean isometry that only has N ! WH coordinates. In
particular, let A be a pW ˆ Hq ˆ N matrix with each video frame along a column
of A. Then perform the singular value decomposition A “ USV T , where U holds a
set of orthogonal coordinate directions spanning the flat in question. Orthogonally
project all video frames onto those directions:

UTA “ UTUSV “ SV (4.20)

and use the coordinates of the columns of SV instead of the pixels when com-
paring distances. This turns the delay embedding into

ŜM,τ ptq “

»

—

—

—

–

UTXptq
UTXpt` τq

...
UTXpt`Mτq

fi

ffi

ffi

ffi

fl

P RNˆN (4.21)

Note that SV can be computed by finding the eigenvectors of ATA, which has a
cost of OpW 2H2 `N3q, which is dominated by W 2H2 if WH " N . In our example
above, this alone reduces the memory requirements from 1GB to 10MB. Of course,
this procedure is the most effective for short videos where there are actually many
fewer frames than pixels, but this encompasses most of the examples in this work.
In fact, the break even point for a 200x200 30fps video is 22 minutes. A similar trick
was used in the classical work on “eigenfaces” (Turk and Pentland (1991)) when
computing the principal components over a set of face images.

4.4.2 Delay Independent Memory And Computation with Diagonal Convolution

In addition to changing coordinate systems, we can exploit another fact if τ “ 1;
that is, if delays are taken exactly on frames and no interpolation is needed. In this
case, the squared Euclidean distance between two vectors SM,1piq and SM,1pjq is

||SM,1piq ´ SM,1pjq||
2
2 “

M
ÿ

m“0

||Xpi`mq ´Xpj `mq||22 (4.22)

Let D2
X be an N ˆN matrix of all pairwise squared Euclidean distances between

frames (possibly computed with the memory optimization in Section 4.4.1), and let
D2
Y be an pN ´MqˆpN ´Mq matrix of all pairwise distances between delay frames.

Then Equation 4.22 implies that D2
Y can be obtained from D2

X by a convolution by

126

Figure 4.14: 2D PCA and pairwise distance matrices DS0,1 and DS28,1 for a video
of a the oscillating pendulum. Bright colors indicate far distances and dark colors
indicate near distances. This example clearly shows how adding a delay embedding is
like performing block averaging along all diagonals of the pairwise distance matrices,
and it gets rid of the mirror symmetry.

Figure 4.15: 2D PCA and pairwise distance matrices DS0,1 and DS18,1 for a video
of a running dog. Even without the delay embedding (M “ 0), the video frames
still form a topological loop. But the period matched delay embedding cleans up the
geometry and leads to a rounder loop, as seen in the resulting self-similarity matrix.

a “rect function,” or a vector of 1s of length M ` 1, over all diagonals in D2
X (i.e.

a moving average). Since it is a vector of all ones, this can be implemented in time
OpN2q with cumulative sums. This means that regardless of how many delays are
chosen, the computation and memory requirements for computing D2

Y depend only
on the number of frames in the video. Note also that DY can simply be computed by
taking the entry wise square root of D2

Y , another OpN2q computation. We note that
a very similar scheme was used by Huang et al. (2010) when comparing distances of
3D shape descriptors in videos of 3D meshes.

Figure 4.14 shows the pendulum video with no delay and with a delay approx-
imately matching the period. The effect of a moving average along diagonals with
the delay is clearly visible. Even in Figure 4.15, where the diagonals dominate and
the raw frames already form a loop embedding, this diagonal averaging cleans up the
geometry.

127

4.4.3 Normalization And Scoring

We also need to perform a few normalization steps to enable fair comparisons between
videos that may be at different resolutions or which have a different range in periodic
motion either spatially or in intensity. First, we perform a “point-center and sphere
normalize” vector normalization which was shown by Perea and Harer (2015) to have
nice theoretical properties (Definition 4). Re-iterating here for convenience in the
context of sliding window videos:

SM,τ ptq “
SM,τ ptq ´ pSM,τ ptq

T1q1

||SM,τ ptq ´ pSM,τ ptqT1q1||2
(4.23)

where 1 is a WHpM ` 1q ˆ 1 vector of all ones. In other words, subtract off
the mean of each component of each vector, and scale each vector so that it has
unit norm (i.e. lives on the unit hypersphere in RWHpM`1q). Subtracting off the
mean of each component will cancel out additive linear drift on top of the periodic
motion, while scaling takes care of resolution / magnitude differences. Note that we
can still use the memory optimization in Section 4.4.1, but we can no longer use the
optimizations in Section 4.4.2 since each window is normalized independently.

Once we have normalized in this way, we can score the videos for periodicity,
quasiperiodicity, and harmonics based on the geometry. Let mpipdgmp,kq be the ith

largest persistence in the persistence diagram of homology dimension p with field
coefficients Zk. We come up with the following scores

1. Periodicity Score (PS)

PS “
1
?

3
max

`

mp1pdgm1,2q,mp1pdgm1,3q
˘

(4.24)

Like Perea and Harer (2015), we exploit the fact that a unit circle with infinitely
many points has a death time of

?
3, since this is the limit shape of a normalized

perfectly periodic sliding window video with infinitely many frames.

2. Quasiperiodicity Score (QPS)

QPS “

c

mp2pdgm1,3qmp1pdgm2,3q

3
(4.25)

This score is designed with the torus in mind. We score based on the second
largest 1D persistent dot times the largest 2D persistent dot, since we want a
shape that has two core circles and encloses a void to get a large score. For a
Čech Complex, based on the K:unneth theorem of homology, the 2-cycle (void)
should die the moment the smallest 1-cycle dies.

128

3. Modified Periodicity Score (MPS)

MPS “
1
?

3
max

`

mp1pdgm1,2 ´mp2pdgm1,2q,mp1pdgm1,3q ´mp2pdgm1,3q
˘

(4.26)

We design a periodicity score which should be lower for quasiperiodic videos,
to help differentiate them from periodic

4. Harmonic Score (HS) If mp1pdgm1,3q ą 0

HS “ 1´mp1pdgm1,2q{mp1pdgm1,3q (4.27)

Otherwise, if HS “ 0. We design this score to indicate the presence of a
harmonic. If the maximum persistence 1-cycle goes up when changing from Z2

to Z3 coefficients, this is indicative of a harmonic, as shown in Section 4.3.3

We use these scores to quantify videos of oscillating vocal folds in Section 4.6,
and we use the periodicity score to rank videos in Section 4.5.

4.4.4 Window Size

As we have shown, in video, the pixels may or may not give unique information to
reconstruct the state space, so we may still need to use delay (Figure 4.14). But
what should M actually be in the worst case, if the dimensions of the state space
are unknown, or in our case, if the number of independent sinusoids in the video is
unknown? One common strategy is the so-called “false nearest-neighbors” scheme
of Kennel et al. (1992). The idea is to keep track of the K nearest neighbors of
each delay point, and if they change as M is increased, then the prior estimates for
M were too low. This algorithm was used in recent work on video dynamics by
Venkataraman and Turaga (2016), for instance.

Even if we can estimate M , however, how do we choose the step size τ? As
shown by Perea and Harer (2015), the sliding window embedding of periodic signals
is roundest when the window size, Mτ , satisfies the following relation:

Mτ “
πk

L

ˆ

M

M ` 1

˙

(4.28)

where L is the length of the period and k is some positive integer. Noting that the
period length is 2π{L, this peaks when the window size is just under half the period,
just under the period, just under 1.5x the period, etc. To verify this experimentally,
we analyzed the maximum persistence versus window size in the pendulum video
(Figure 4.16). We fixed some sufficiently large M and chose τ to be L{M for a given
period L, so that the dimension was fixed. Fixing the dimension helps to control
for effects that could arise from the curse of dimensionality, such as points spreading
apart, which would lead to a later birth time of the maximum cycle class. The peaks
in roundness occur where expected, so when we have a rough estimate of the period
we are looking for, we fix the window size just under that period.

129

Figure 4.16: Varying the window size, Mτ , in a delay embedding of the synthetic
pendulum video, which has a period length of 25 frames. Red dashed lines are
drawn at the window lengths that would be expected to maximize roundness of the
embedding for that period length based on theory in Perea and Harer (2015).

4.4.5 Fundamental Frequency Estimation

Though Figure 4.16 suggests robustness to window size as long as the window is more
than half of the period, we may not know what that is in practice. To automate
window size choices, we do a coarse estimate using fundamental frequency estima-
tion techniques on a 1D surrogate signal. To get a 1D signal, we extract the first
coordinate of autotuned diffusion maps with κ “ 0.1 (Section 2.3.4) on the raw video
frames (no delay) after taking a smoothed time derivative (Equation 4.2). Note that
a similar diffusion-based method was also used in recent work by Yair et al. (2016)
to analyze the frequency spectrum of a video of an oscillating 2 pendulum + spring
system in a quasiperiodic state. Once we have the diffusion time series, we then ap-
ply the simple and elegant normalized autocorrelation method of Mcleod and Wyvill
(2005) to estimate the fundamental frequency. In particular, given a discrete signal
x of length N , define the autocorrelation as

rtpτq “
t`N´1´τ

ÿ

j“t

xjxj`τ (4.29)

However, as observed by De Cheveigné and Kawahara (2002), a more robust
function for detecting periodicities is the squared difference function

130

dtpτq “
t`N´1´τ

ÿ

j“t

pxj ´ xj`τ q
2 (4.30)

this can be rewritten as

dtpτq “ mtpτq ´ 2rtpτq (4.31)

where

mtpτq “
t`N´1´τ

ÿ

j“t

px2
j ` x

2
j`τ q (4.32)

This is in fact the squared Euclidean distance between two sliding windows of
length (N´1´τ) offset by τ , so it is very similar philosophically to our time-ordered
point cloud processing pipeline, except in this case it’s a time-ordered point cloud on
top of a function derived from another time-ordered point cloud (a sliding window
on sliding windows). Finally, Mcleod and Wyvill (2005) suggest normalizing this
function to the range r´1, 1s to control for window size and to have an interpretation
more like a Pearson correlation coefficient:

ntpτq “ 1´
mtpτq ´ 2rtpτq

mtpτq
“

2rtpτq

mtpτq
(4.33)

The fundamental frequency is then the inverse period of the largest peak in nt
which is to the right of a zero crossing. The zero crossing condition helps prevent an
offset of 0 from being the largest peak. Defining the normalized autocorrelation as
in Equation 4.33 has the added advantage that the value of ntpτq at the peak can be
used as a way of scoring periodicity, which the authors call “clarity.” Values closer
to 1 indicate more perfect periodicities. Note that this technique will sometimes
pick integer multiples of the period. To mitigate this, we multiply ntpτq by a slowly
decaying envelope which is 1 for 0 lag and 0.9 for the maximum lag to emphasize
smaller periods. Figure 4.17 shows the result of this algorithm on a periodic video,
and Figure 4.18 shows the algorithm on an irregular video.

4.5 Ranking Videos by Periodicity

Now that we have established our full pipeline, we would like to verify that rankings
obtained from our periodicity score (Equation 4.24) agree with how humans rank
videos by periodicity. We created a small dataset of 20 different creative commons
videos, which were each 5 seconds at 30 frames per second. Some of them seem
periodic, such as a person waving hands, a beating heart, and spinning carnival
rides. Some of them seem nonperiodic, such as explosions, a traffic cam, and drone
view of a boat sailing. And some of them are in between, such as the pendulum

131

Figure 4.17: Diffusion maps + normalized autocorrelation fundamental frequency
estimation in a video of vibrating vocal folds (Section 4.6). The chosen period length
is 32, as indicated by the red dot over the peak. This matches with the visually
inspected period length.

Figure 4.18: Diffusion maps + normalized autocorrelation fundamental frequency
estimation on a video of vibrating vocal folds with irregular oscillations (Section 4.6).

132

First Diffusion Coordinate

Figure 4.19: An example of the Z3 TDA score (top), the Cutler and Davis (2000)
score (bottom left, matched peaks in green and lattice in blue), and the clarity score
(bottom right) on a periodic video of a man waving his arms from the KTH dataset
(Schuldt et al. (2004)).

video with simulated camera shake by convolving with per-frame directed random
walks (see Delbracio and Sapiro (2015)).

4.5.1 Automated Techniques for Ranking

We use three different classes of techniques for machine ranking of periodicity.

TDA-Based Technique

We sort the videos in decreasing order of periodicity score (Equation 4.24). We fix
the window size at 20 frames and the embedding dimension at 20 frames (which is
enough to capture 10 strong harmonics). We also apply a time derivative of width
10 to every frame. We report two rankings, one for the periodicity score on Z2

coefficients, and one for the periodicity score on Z3 coefficients.

Cutler-Davis Technique

We use the techniques of Cutler and Davis (2000), as described in Section 4.2.2. We
report two sets of rankings. The first is based on the number of standard deviations

133

First Diffusion Coordinate

Figure 4.20: An example of the Z3 TDA score (top), the Cutler and Davis (2000)
score (bottom left, matched peaks in green and lattice in blue), and the clarity score
(bottom right) on a video of an explosion, which is nonperiodic.

above the mean that the largest peak is in the average power spectral density of the
video SSM (Figure 4.5, center). Higher values indicate stronger frequency peaks, so
we sort in descending order to get a ranking with most periodic videos first. The
second score is based on the autocorrelation lattice (Figure 4.5, right). We modify the
binary periodic/non-periodic score provided in Cutler and Davis (2000) as follows.
Let E be sum of the Euclidean distances of the matched peaks in the autocorrelation
image to the best fit lattice, let r1 be the proportion of lattice points that have been
matched, and let r2 be the proportion of peaks which have been matched to a lattice
point. Then the final periodicity score is given as

p1` E{r1q

pr1r2q
3

(4.34)

A lattice which fits the peaks perfectly (r1 “ 1) with no error (E “ 0) and no
false positive peaks (r2 “ 1) will have a score of 1, and any video which fails to
have a perfectly matched lattice will have a score greater than 1. Hence, we sort in
increasing order of the score to get a ranking.

As we will show, this technique agrees the second best with humans after the
TDA ranking. One of the main drawbacks is numerical stability of finding maxes in
non-isolated critical points around nearly diagonal regions (Figure 4.7), which will

134

erroneously inflate the score. Also, the lattice searching only occurs over an integer
grid, but there may be periods that aren’t integer number of frames, so there will
always be a nonzero E for such videos. By contrast, our sliding window scheme can
work for any real valued period length.

Diffusion Maps + Normalized Autocorrelation “Clarity”

Finally, we apply the technique from Section 4.4.5 to get an autocorrelation function,
and we report the value of the maximum peak of the normalized autocorrelation to
the right of a zero crossing, referred to as “clarity” by Mcleod and Wyvill (2005).
Values closer to 1 indicate more perfect repetitions, so we sort in descending order
of clarity to get a ranking.

Examples

Figure 4.19 shows an example of these three different techniques on a periodic video.
There is a dot which rises above the diagonal in the persistence diagram, a lattice
is found which nearly matches the critical points in the autocorrelation image, and
autocorrelation function on diffusion maps has a nice peak. By contrast, for a non-
periodic video (Figure 4.19), there is hardly any persistent homology, there is no well
matching lattice, and the first diffusion coordinate has no apparent periodicities.

4.5.2 Human Hodge Rank Aggregation

We now describe how we aggregate the opinions of many human users to get a human
ranking, which we can compare to the machine rankings. Humans are notoriously
bad at coming up with global rankings of sets larger than about 5 to 7 (Miller (1956)),
so we opt for an experiment where humans are only presented with two videos at a
time, and they simply make a binary decision about which one is more periodic. This
has the added benefit of enabling a very simple interface, as show in in Figure 4.21.
In our experiment, we present each pair of videos in the set of 20,

`

20
2

˘

“ 190, each
to three different users, for a total of 570 pairwise rankings. We ended up with 15
unique workers doing this in our experiment3.

To aggregate this information into a global ranking which is “as consistent as
possible” with the pairwise rankings, we implement a technique known as Hodge rank
aggregation (Jiang et al. (2011)). This technique expresses consistency of rankings in
topological language, using cohomology, the dual of homology. Describing fully the
mathematics is beyond our scope, but the idea is that a set of inconsistent rankings,
such as a ą b, b ą c, c ą a, when considered as 1-forms) (signed functions on directed
edges between a, b, and c) lead to a loop, or “co-cycle.” In terms which may be more
familiar to engineers, a set of rankings can be thought of as a vector field over a

3 We gratefully acknowledge the time and effort put in by anonymous people on the Internet to
helps us to create an unbiased global ranking!

135

Figure 4.21: The interface that humans are given on the Amazon Mechanical Turk
for pairwise ranking videos by periodicity. We use a seeded random number generator
to come up with 3 digit numbers that flash at the end of the videos to ensure users
actually spend 5 seconds watching them.

b

a

c

b

a

c
Non-Trivial Cocycle (Nonzero Curl) Null Co-Cycle (Gradient Field)

Figure 4.22: On the left, expressing the preferences a ą b, b ą c, and c ą a as
1-forms (vectors) leads to a vector field which has curl, which is one way of expressing
the Condorcet paradox, or the fact that it is impossible to come up with a scalar
function on a, b, and c that gives rise to those preferences when considering uphill
flows. On the right, swapping the third preference to a ą c leads to a globally
consistent set of rankings, from which it is possible to find a scalar field whose
gradient gives rise to those arrows (e.g. a “ 3, b “ 2, c “ 1)

136

-4 -3 -2 -1 0 1 2 3 4

Score

0

20

40

60

80

C
o
u
n
ts

Histogram of Weighted Pairwise Turk Scores

Figure 4.23: The histogram of scores that the workers on the Amazon Mechanical
Turk gave to all pairwise videos.

set of objects, and an inconsistent ranking has nonzero curl (i.e. nontrivial cocycle
class), as illustrated in Figure 4.22. This is also known as the Condorcet paradox
in the context of rankings. Hodge rank aggregation is able to decompose all of the
human rankings into the direct sum of three 1-forms:

C1
“ ´∇psq

à

H
à

I (4.35)

where s is a scalar field, whose gradient is curl-free (fully consistent), H expresses
“harmonic cocycles,” and I expresses local cocycles. The scalar function s on all of
the vertices can be used to give a global ranking, as it is curl-free. It is, in the least
squares sense, the scalar function whose gradient best matches the set of preferences
given. For the leftover terms, the norm of H is a measure of global inconsistencies
in the ranking, and the norm of I is a measure of local inconsistencies. All of these
quantities can be computed with a sparse linear least squares system.

Note that the 1-forms that we feed to the algorithm are weights based on the
pairwise rankings returned from the Turk. If video a is greater than video b, then
the edge ab gets a weight of +1, or -1 otherwise. Since we have 3 rankings for each
video, we actually assign weights of +3, +1, -1, or -3. The +/- 3 are if all rankings
agree in one direction, and the +/- 1 are if one of the rankings disagrees with the
other two. Figure 4.23 shows a histogram of all of the weighted scores from users
on the Amazon Mechanical Turk. They are mostly in agreement, though there are
a few +/- 1 scores.

4.5.3 Results

Once we have the global human rankings and the global machine rankings, we can
compare them using the Kendall-Tau score (Kendall (1938)), which is defined as
follows:

Definition 36. Given a set of objects N objects X and two total orders ą1 and ą2,
where ą pxa, xbq “ 1 if xa ą xb and ą pxa, xbq “ ´1 if xa ă xb, the Kendall-Tau

137

Table 4.1: The Kendall-Tau scores between all of the machine rankings and the
Hodge aggregated human rankings.

Human TDA Z2 TDA Z3 CD Freq CD Lattice Clarity
Human 1 0.642 0.663 -0.295 0.347 0.284
TDA Z2 0.642 1 0.979 -0.295 0.2 0.537
TDA Z3 0.663 0.979 1 -0.316 0.221 0.516
CD Freq -0.295 -0.295 -0.316 1 -0.0842 -0.189
CD Lattice 0.347 0.2 0.221 -0.0842 1 0.411
Clarity 0.284 0.537 0.516 -0.189 0.411 1

score is defined as

τ “
1

NpN ´ 1q{2

ÿ

iăj

pą1 pxi, xjqqpą2 pxi, xjqq (4.36)

For two rankings which agree exactly, the Kendall-Tau score will be 1. For two
rankings which are exactly the reverse of each other, the Kendall-Tau score will be
-1. In this way, it analogous to a Pearson correlation between rankings.

Table 4.1 shows the Kendall-Tau scores between all of the different machine rank-
ings and the human rankings. Encouragingly, our sliding window video TDA tech-
niques agree with the human rankings more than any other pair of ranking types.
Z3 coefficients agree slightly more with the human ranking, but not in any statisti-
cally significant way (in the dataset, the difference was two pairs of adjacent videos
flipping, leading to a τ of 0.98 between Z2 and Z3). The second most similar are
the TDA and the diffusion clarity, which is interesting since they are both geometric
techniques.

4.6 Dynamics in Vocal Fold Videos

Now that we have carefully explored the basic capabilities of our methodology, we
apply it to a real world problem of interest in medicine. We show that our method
can automatically detect certain types of voice pathologies from “high-speed glot-
tography,” or high speed videos (4000 frames per second) of the glottis and left and
right vocal folds in the human vocal tract (Wittenberg et al. (1995), Wilden et al.
(1998), Deliyski et al. (2007)). In particular, we are able to detect and differentiate
quasiperiodicity from periodicity by using our geometric sliding window pipeline.
Quasiperiodicity is a special case of what is referred to as “biphonation” in the bi-
ological literature, where nonlinear phenomena case a physical process to bifurcate
into two different periodic modes, often during a transition to chaotic behavior (
Herzel et al. (1996)). The torus structure we sketched in Figure 2.11 has long been
recognized in this context (Herzel et al. (1996),Herzel et al. (1994)) but we provide
a novel way of quantifying it using TDA. We are also sometimes able differentiate

138

Figure 4.24: Video frames and sliding window statistics on a video of vocal folds
undergoing normal periodic vibrations (Mehta et al. (2011)). One strong loop is
visible in PCA and in the persistence diagrams

Figure 4.25: Video frames and sliding window statistics on a video of vocal folds
undergoing biphonation, courtesy of Juergen Neubauer (Neubauer et al. (2001)).
PCA suggests a possible torus, and the persistence diagram indeed has the signature
of a torus (two strong independent 1-cycles and one 2-cycle)

139

Figure 4.26: Video frames and sliding window statistics of “irregular” vocal cord
vibrations, courtesy of Herbst et al. (2016). Though 2D PCA looks similar to Fig-
ure 4.25, no apparent 1D or 2D topological features are apparent in the high dimen-
sional state space.

subharmonic periodicity from ordinary periodicity by using the observation in Sec-
tion 4.3.3. Subharmonicity is a phenomenon that can occur in nonlinear systems
where there is an additional harmonic introduced at a positive integer multiple of
the period of the main oscillation (Wilden et al. (1998)).

We have a collection of 9 videos that we analyze, which we draw from a variety
of different sources (Zacharias et al. (2016), Mehta et al. (2011), Neubauer et al.
(2001), Herbst et al. (2016)). There are two videos which correspond to “normal”
periodic vocal folds, three which correspond to biphonation (Neubauer et al. (2001)),
two of which correspond to subharmonic phenomena, and two of which correspond
to irregular motion. We manually extracted 400 frames per video (100 milliseconds)
and autotuned the window size based on autocorrelation of 1D diffusion maps (Sec-
tion 4.4.5). We then chose an appropriate τ so that the window size was 70, and we
chose a time spacing so that each point cloud would have 600 points. As shown in Ta-
ble 4.2, our technique is able to differentiate between the four classes. We also show
PCA and persistence diagrams for one example for each class. In Figure 4.24, we see
what appears to be a loop in PCA, and one strong 1D persistent dot confirms this.
In Figure 4.25, we see a prominent torus in the persistence diagram. In Figure 4.26,
we don’t see any prominent structures in the persistence diagram, even though PCA
looks like it could be a loop or a torus. Note, however, that PCA only preserves
13.7% of the variance in the signal, which is why high dimensional techniques are
important to draw quantitative conclusions. Finally, in Figure 4.27, we see what
appears to be a periodic video, but the maximum periodicity changes when switch-

140

Figure 4.27: Video frames and sliding window statistics of subharmonic vocal cord
vibrations, courtesy of Herbst et al. (2016). Although 2D PCA would suggest an
ordinary periodic loop, changing field coefficients from Z2 to Z3 reveals that there
is potentially a Möbius strip structure, which is consistent with the ground truth
labeling of subharmonic.

141

ing field coefficients, since it actually corresponds to a subharmonic video. The one
anomaly in Table 4.2 is that one of the periodic videos got a relatively high harmonic
score. Overall, the harmonic score is the weakest indicator we have, though the fact
that both of the subharmonic videos are in the top 3 is encouraging.

Table 4.2: Results of our sliding window pipeline videos of periodic vocal folds,
biphonation, and irregularities. We give the max persistence periodicity score (PS),
the modified periodicity score (MPS), the harmonic score (HS), and quasiperiodic
score (QPS) presented in Section 4.4.3. We also show the window size (Win) that the
autocorrelation technique in Section 4.4.5 gives. We have bolded the top three MPS,
HS, and QPS scores across all videos. The max modified periodic scores include the
two periodic videos and one of the biphonation videos. The max quasiperiodic scores
are all of the biphonation videos, which means the one with a high periodicity score
could be ruled out of the periodicity category. The subharmonic videos and one of
the periodic videos receive the highest harmonic score.
Video Name Win PS MPS HS QPS
Periodic 1 (Herbst et al. (2016)) 16 0.816 0.789 0.035 0.011
Periodic 2 (Mehta et al. (2011), Figure 4.24) 32 0.601 0.533 0.131 0.009
Biphonation 1 (Neubauer et al. (2001)) 53 0.638 0.294 0.012 0.292
Biphonation 2 (Neubauer et al. (2001)) 42 0.703 0.583 0 0.116
Biphonation 3 (Neubauer et al. (2001), Figure 4.25) 67 0.515 0.076 0 0.426
Subharmonic Mucus (Zacharias et al. (2016)) 39 0.519 0.442 0.093 0.021
Subharmonic Dynamics (Herbst et al. (2016)) 21 0.537 0.488 0.194 0.028
Mucus Perturbed Periodic (Zacharias et al. (2016)) 94 0.028 0.019 0 0.004
Irregular (Herbst et al. (2016), Figure 4.26) 232 0.18 0.097 -0.6 0.04

4.6.1 Comparisons To Standard Techniques

Our work takes quite a different approach from prior works on machine analysis of
these videos. Usually, an inherently Lagrangian approach is applied, where different
points on the left and right vocal folds are tracked, and coordinates of these points are
analyzed as 1D time series (e.g. Neubauer et al. (2001); Qiu et al. (2003); Lohscheller
et al. (2007); Herbst et al. (2016), Mehta et al. (2011)). This is a natural approach,
since those are the pixels that measure the signal of interest, and using a 1D surrogate
function enables well-understood 1D signal processing techniques. However, one of
the issues of off-the-shelf image processing techniques that look for edges is that the
edge detectors often require tuning, and they can suddenly fail when the vocal folds
close (Lohscheller et al. (2007)). In our technique, we give up the ability to localize
the anomalies (left/right, anterior/posterior) since we are not tracking them, but in
return we do virtually no preprocessing, and our technique is domain independent.

There are also differences in how we quantify the signals. Neubauer et al. (2001)
perform PCA on all of the time series from the tracked 1D points on the vocal folds,

142

and they examine the Fourier spectrum of the principal components (which they
refer to as “empirical orthogonal functions”) to qualitatively point out differences
in the modes present between normal phonation and biphonation. Many works also
use standard techniques from nonlinear time series analysis on these signals, such as
phase portraits, Poincaré Sections, and next amplitude maps (Herzel et al. (1994)).
A very clever recent work uses the entropy of histograms of 1D Poincare Sections to
detect bifurcations and the onset of irregularities (Herbst et al. (2016)). However,
even though bifurcations can be effectively detected, they only use a 1-lag time
delay embedding, which is inadequate to properly reconstruct the quasiperiodic phase
space. In our work, we are able to specifically reconstruct and detect quasiperiodic
phase spaces with a joint multi-lag delay embedding of all pixels using tools which can
work in high dimensional ambient spaces. This allows us, for example, to differentiate
between Figure 4.25 and Figure 4.26.

4.7 Conclusions / Future Work

We believe we have made the case for a geometric / dynamical systems approach
in video, with two cursory applications matching human rankings of periodicity and
funding normal and chaotic regimes in videos of vibrating vocal folds.

We made a naive attempt in this work to correct for drift, but in future work
we would like to tackle more complicated camera shake / alignment scenarios. The
challenge in that case will be to blindly decouple drift from legitimate periodic mo-
tion. We remark that other Eulerian approaches to analyzing periodic videos suffer
from similar problems when drift is present (Wadhwa et al. (2013)). If enough of
the signal is in color changes in the video as opposed to motion, a simple solution
is to use optical flow to estimate motion and to warp all frames to a canonical pose
with a piecewise affine map. This has been done automatic heartrate estimation al-
gorithms in consumer video (Kumar et al. (2015); Tulyakov et al. (2016)), and there
are perhaps applications where we can apply our technique.

Additionally, we would like to derive more specific bounds for when to expect a
change in field coefficients to make a difference for harmonics, and we would like to
extend beyond period doubling to any integer harmonic.

Finally, we would like to combine our vocal cord anomaly classification techniques
with those in Herbst et al. (2016) on much larger databases to see if a large number
of different types of anomalies can be automatically detected and classified.

143

5

Isometry Blind Time Warping

5.1 Introduction

We have now seen how different geometric descriptors of time-ordered point clouds
are useful for describing the “shape of time series” in audio and video applications.
Now, we will hone in more specifically on one of the descriptors in its own right:
the self-similarity matrix (SSM). Using the SSM as a guide, we construct invariants
to parameterizations of time-ordered point clouds, so that time warping of data is
properly modeled. Moreover, since these structures are built on the SSM, they are
also automatically isometry blind. The result is time-ordered point cloud comparison
schemes which simultaneously factor out both isometries and parameterization.

We create two classes of isometry/parameterization blind matchings in this chap-
ter. The first is a generalization of DTW for full metric alignment up to an isometry,
which we discuss in Section 5.3. The second is a higher level descriptor based on
critical points of the SSM, which we discuss in Section 5.4. Though this chapter is
mostly theoretical, we hope that it will eventually address problems which are able to
synchronize time series across modalities. For instance, one may like to synchronize
audio of one person saying a phrase and video of another person saying the same
thing, possibly at different rates (with non-uniform time warps). A simple example
in this is the “CUAVE” dataset (Patterson et al. (2002)), which consists of video
and audio of different subjects pronouncing the digits 0 through 9.

5.2 Prior Work on Time-Ordered Point Cloud Alignment / Re-Parameterization

There has been a lot of work on space curve matching for curves in the same ambient
space, up to re-parameterizations. Among these are DTW and Fréchet Distance,
which we reviewed in Section 2.4.

144

Recently there has also been some work attacking the more difficult problem of
matching curves which live in different ambient spaces or which live in the same
space but which may differ by a rigid rotation or translation, in addition to re-
parameterization. Zhou and Torre (2009) and Zhou and De la Torre (2016) attack
this with an expectation maximization approach, switching back and forth between
a generalized eigenvalue problem to find the best linear projection to put curves in
correspondence with each other and DTW to come up with the best parameterization
map once the curves are aligned. This is similar to the earlier work of Hsu et al.
(2005), which does the same basic alternating algorithm, but restricted to the same
space (R3 with applications to MOCAP synchronization). Vejdemo-Johansson et al.
(2015) attack a special case where curves form closed loops, using cohomology to
find maps from the curves to the circle, where they can be synchronized.

Below we discuss two related techniques in slightly more detail to show the diffi-
culties that can arise when trying to perform a spatial alignment before time warping,
further motivating SSM-based techniques which avoid an explicit alignment.

5.2.1 Procrustes Alignment / Iterative Closest Points

One objective for spatial alignment could be to find the optimal rigid transformation
taking one set of points to another. This leads to what’s known as the Procrustes
distance (or “Whaba’s problem” Whaba (1965))

Definition 37. Given two Euclidean point clouds X, Y P Rd, each with N points
which are assumed to be in correspondence, the Procrustes distance is defined as 1

dP pX, Y q “ min
Rx,Ry ,tx,ty

N
ÿ

i“1

||Rxpxi ´ txq ´Rypyi ´ tyq||
2
2 (5.1)

where Rx and Ry are d ˆ d rotation matrices, and tx and ty are d-dimensional
translational offsets

The Procrustes can be solved with the Kabsch algorithm (Kabsch (1976)). The
optimal translation simply aligns the points by their center of mass, so tx “ X and
ty “ Y . Let Ŷ “ Y ´ ty and X̂ “ X ´ tx, and let X̂ and Ŷ be d ˆ N matrices
holding the coordinates of each point in the corresponding columns. Then the optimal
rotations are found by taking a singular value decomposition.

X̂Ŷ T
“ USV T (5.2)

The optimal rotations are then Rx “ UT and Ry “ V T .
One huge issue that’s been swept under the rug is that not only do X and Y

have to have the same number of points, but the correspondences must be known a

1 Most authors will define only one rotation or translation, usually with respect to Y , which is
convenient in practice if we want to keep one point cloud fixed, but we prefer this definition because
it is more symmetric.

145

priori. Often in practice, neither of these assumptions are true. To deal with this,
there has been a long line of research on an algorithm known as Iterative Closest
Points (ICP)2 (Besl and McKay (1992), Chen and Medioni (1992)), usually in the
context of 3D shape registration. If a subset of correspondences is known, they are
used. For the rest, the algorithm proceeds as follows

1. Center the point clouds on their centers of mass

2. Find the nearest neighbors in Y to all points in X

3. Solve the Procrustes alignment based on these correspondences (possibly with
duplication if two points in X have the same nearest neighbor in Y)

4. Rotate the points so that they are in alignment, and repeat steps 2-4 until
convergence

This algorithm works well in practice if there is a good initial guess of alignment,
but it can converge to a poor local minimum if not. It also has high sensitivity to
outliers and missing data, which occur frequently in applications of 3D scanning (for
example), though there has been some very promising recent work addressing this
with norms other than L2 which deal with outliers better (Bouaziz et al. (2013)). In
spite of these problems, Ying et al. (2016) use a modified version of ICP, replacing
step 3 with dynamic time warping instead of nearest neighbors. This ensures that
the time order will be respected, which is not guaranteed with nearest neighbors only.
This analogous to the difference between Fréchet Distance and Hausdorff distance,
for readers who are familiar.

We also remark that as an alternative to ICP and Procrustes, it is possible to
rasterize point clouds to a grid and exhaustively search over all rotations using a
modified version of the FFT (Kazhdan (2007)). This works well and is efficient for
reasonable grid sizes of low dimensions, but it suffers from the curse of dimensionality
since the number of grid cells explodes in higher dimensions.

5.2.2 Canonical Correlation Analysis

There are also techniques which use Canonical Correlation Analysis. These are very
similar in spirit to Procrustes-based techniques, except spatial transformations are
not restricted to rigid rotations, and the point clouds can be mapped into Euclidean
spaces of a lower dimension. More precisely,

Definition 38. Given two point clouds represented by matrices X P Rd1ˆN and Y P
Rd2ˆN , each with N points arranged along columns assumed to be in correspondence
between X and Y , Canonical Correlation Analysis is defined as

2 Not to be confused with the Insane Clown Posse

146

dCCA “ min
VxPRdxˆb,Vy

||V T
x X ´ V T

y Y ||
2
F (5.3)

for some chosen constant b ď minpd1, d2q, s.t.

V T
x XX

TVx “ V T
y Y Y

TVy “ Ib (5.4)

In other words, we seek to find linear projections for each point cloud that project
into the same space Rb, where the sum of the squares is minimized in that space.
This can also be solved with a singular value decomposition. Like Procrustes, this
assumes that the correspondences are known a priori. To find the correspondences,
Zhou and Torre (2009) take the same iterative approach as Ying et al. (2016) did
with Procrustes, but they alternate back and forth between DTW and CCA instead
of DTW and Procrustes. The same caveats apply to getting stuck in local mins if
the initial correspondences are bad.

Finally, note that a recent work in Trigeorgis et al. (2016) takes a similar ap-
proach, but it replaces CCA by learning features in the projection stage with a deep
neural network. This of course requires training data with known correspondences.

5.3 Self-Similarity Images And Metric Alignment

Most of the approaches we reviewed to align time series which have undergone linear
transformations try to explicitly factor out those transformations before doing an
alignment, but this is not necessary if we build our algorithm on top an SSM between
two point clouds, which is already isometry blind, so that is the strategy we take.
We note an additional advantage that we no longer need to restrict ourselves to
Euclidean spaces either.

5.3.1 Induced 2D Warping Functions

To set the stage for our algorithms, we first study the maps that are induced be-
tween self-similarity images by re-parameterization functions, which will help in the
algorithm design. For example, take the figure 8 curve, which we designate γ8 (Fig-
ure 5.1a)

γ8ptq : r0, 1s Ñ

„

cosp2πtq
sinp4πtq

(5.5)

Figure 5.1c shows the SSM of a linearly parameterized sampled version of this
curve, while Figure 5.1d shows the SSM corresponding to a re-parameterized sampled
version. Note that the maps between the domains of the SSMs shown are always
rectangles, and they are independent of underlying curve being parameterized (they
only depend on the relationship between two parameterizations). This can be seen
by starting with a space curve γ : r0, 1s Ñ Rd and its resulting self-similarity image

147

Figure 5.1: Self-similarity images of different parameterizations of a Figure 8 with,
annotated with the critical points. Local mins are shown in blue, local maxes are
shown in red, and saddle points are shown in green. Corresponding rectangles of the
2D map hˆh are drawn with lines. Note that the critical points are unchanged, and
that rectangles in one image map to rectangles in the other image

Dγ (Definition 6). Given a homeomorphism h : r0, 1s Ñ r0, 1s, which gives rise to a
space curve γh : r0, 1s Ñ Rd and a corresponding self-similarity image Dγh , there is an
induced homeomorphism, h ˆ h from the square to itself between the two domains
of Dγ and Dγh . The commutative diagram below shows all of the maps that are
involved

148

ru, vs R

rs, ts

Dγ

Dγhhˆ h

In other words

Dγh “ Dγphpsq, hptqq (5.6)

For a discrete version of these maps between time-ordered point clouds, replace
the homeomorphism h with a warping path, and the relationships are otherwise the
same.

5.3.2 Gromov-Hausdorff Distance

All of our work in this section can be put into the Gromov-Hausdorff Distance frame-
work, which describes how to “embed” one metric space into another. More formally,

Definition 39. Given two discrete metric spaces pX, dXq and pY, dY q, and a corre-
spondence C (Definition 9) between X and Y , the p-Stress is defined as

SppCq “

¨

˝

ÿ

px,yq,px1,y1qPC

pdXpx, x
1
q ´ dY py, y

1
qq
p

˛

‚

1{p

(5.7)

L8 stress S8pCq, or the maximum stretching induced by a correspondence, is often
referred to as the “distortion” of a correspondence.

Intuitively, the p-Stress measures how much one has to stretch one metric space
when moving it to another. The Gromov-Hausdorff Distance is based off of the L8
stress specifically (Gromov (2007)):

Definition 40. Given two discrete metric spaces pX, dXq and pY, dY q, the Gromov-
Hausdorff Distance dHpX, Y q between X and Y is

dGHpX, Y q “
1

2
inf
CPΠ
S8pCq (5.8)

where Π is the set of all correspondences between X and Y .

149

In other words, the Gromov-Hausdorff Distance measures the smallest possible
distortion between a pair of points over all possible embeddings of one metric space
into another. Unfortunately, the Gromov-Hausdorff Distance turns out to be NP-
complete, and there is no known algorithm to even approximate it within a constant
factor (Agarwal et al. (2015)). Bronstein et al. (2006) develop a practical algorithm
to approximate the 2-stress between two polygon mesh surfaces. But even in this
special case, they end up posing a highly nonconvex quadratic optimization problem,
which is only guaranteed to converge to a local minimum and hence which needs a
good initial guess, though they showed success for applications of 3D face matching.

5.3.3 IBDTW Distance Definition

The hardness of the Gromov-Hausdorff Distance is inherent in the definition, as
the sheer number of correspondences to consider is huge. We design a new distance
similar to the Gromov-Hausdorff Distance which can be lower bounded in polynomial
time by restricting to warping path correspondences:

Definition 41. Given two time-ordered point clouds X and Y with metrics dX and
dY , respectively, the IBDTW Distance is defined as

IBDTWpX, Y q “ min
WPΩ
S1pWq (5.9)

where W P Ω is a valid warping path (Definition 32).

In other words, it is the 1-stress restricted to warping path correspondences.
Note that for a general correspondence, there can be up to

`

MN
2

˘

or OpM2N2q terms
in each correspondence in Equation 5.8. However, in a warping path has at most
pM `N ´1q correspondences, so there are only OppM `Nq2q terms in Equation 5.9.

5.3.4 First Last Distance

As a warmup exercise to designing an algorithm to find the IBDTW, we first define a
dissimilarity measure which is weaker than Definition 41 but which is easier to solve

Definition 42. Given two time-ordered point clouds X and Y with M and N
points and metrics dX and dY , respectively, the First-Last Dynamic Time Warping
(FLDTW) Distance is defined as

FLDTWpX, Y q “ min
WPΩ

ÿ

pxi,yjqPW

|dXpx1, xiq ´ dY py1, yjq| ` |dXpxM , xiq ´ dY pyN , yjq|

(5.10)
where W P Ω is a valid warping path (Definition 32).

150

In other words, this is like the IBDTW, except we only consider a subset of the
possible terms in the L1-distortion; namely, the stretching between the first point
and all of the rest of the points and the last point and all of the points. The reason
this is so convenient is that by the definition of a warping path, the first point of
each sequence and the last point of each sequence must be matched to each other,
so the L1-distortion terms in Equation 5.10 are guaranteed to be a subset of those
in Equation 5.9. This problem can reduced to ordinary DTW, and can hence be
solved in OpMNq time. In particular, it is the DTW Distance of the following two
time-ordered point clouds under the L1 metric:

X “

»

—

—

—

—

—

–

dXpx1, x1q dXpxM , x1q

dXpx1, x2q dXpxM , x2q

dXpx1, x3q dXpxM , x3q
...

...
dXpx1, xMq dXpxM , xMq

fi

ffi

ffi

ffi

ffi

ffi

fl

, Y “

»

—

—

—

—

—

–

dY py1, y1q dY pyN , y1q

dY py1, y2q dY pyN , y2q

dY py1, y3q dY pyN , y3q
...

...
dY py1, yNq dY pyN , yNq

fi

ffi

ffi

ffi

ffi

ffi

fl

(5.11)

where the first coordinate of each point cloud is the “first point distance” and the
second coordinate is the “last point distance.” Figure 5.2 shows an example with
parts of the Figure 8 curve which have been parameterized differently and which
have been rotated and translated with respect to each other. Note how the first and
last point distances are warped versions of each other, and when they are plotted
jointly in R2 they trace the same plane curve.

5.3.5 A Greedy Algorithm Lower Bounding The IBDTW

The first-last distance works well if the first and last point happen to be similar
metrically between the two time-ordered point clouds, but this is not guaranteed, as
the geometry could be distorted at the beginning or end of otherwise similar metric
time-ordered point clouds. To extend this idea so that it works matching any row
from one SSM to any row of another SSM, we make a simple modification to the DTW
algorithm which can handle an imposed restriction on the warping path, defining a
subroutine in Algorithm 4. The idea is to run the original DTW algorithm twice,
once for point clouds X1:i, Y1:j and once on Xi:M and Yj:N , and to add the costs. This
is again exploiting the fact that the DTW algorithm must start on the first point
and end on the last point, so we split it into two optimal sub-paths, one which ends
on Xi, Yj and one which starts on Xi, Yj. Figure 5.3 shows an example.

Now, we can do the same thing as in the first-last distance, but this time we can
match any pair of rows. In particular, we match the ith row of SSM A to the jth row of
SSM B under the L1 distance, enforcing the constraint that pi, jq PW . Since we don’t
know ahead of time which rows should be in correspondence, we try every row i of
SSM A against every row j in SSM B, and we create a Cross-Similarity Time-Warp
Matrix (CSTWM) C so that Cij “ constrainedDTWpSSMAi, SSMBjq. Then, we
can apply the ordinary DTW algorithm to C. Algorithm 5 summarizes this process,

151

Figure 5.2: An example of the first and last point distances on parts of the Figure 8
which have been sampled differently from each other. The bottom left two plots show
the first and last point distances, while the bottom right plot shows them plotted
jointly with one distance along each axis.

which is simply a wrapper around the ordinary constrained DTW algorithm, with
the outer loop itself as a DTW algorithm (so DTW on lots of constrained DTWs).

Figure 5.4 shows an example of running this algorithm on two rotated/translated/re-
parameterized time-ordered point clouds in R2. As can be seen by the colors indicat-
ing correspondences, the algorithm was able to put the points into correspondence
correctly even without first spatially aligning the curves. Figure 5.5 shows an exam-
ple of running the algorithm between two curves which are metrically distorted in
addition to being rotated/translated/re-parameterized. The returned warping seems
reasonable.

Lower Bound Proof

We now connect Algorithm 5 to the IBDTW distance, and thereby show a relation-
ship to the Gromov-Hausdorff Distance:

Lemma 7. This cost returned by Algorithm 5 lower bounds the IBDTW Distance.

152

Figure 5.3: An example of unconstrained DTW (left) compared to constrained
DTW (right). The two points which are designated to be in correspondence are
highlighted with a green dot in the figure on the right. This forces a slightly sub-
optimal path with respect to the global alignment, but it is the optimal path with
respect to the constraint.

Algorithm 4 Dynamic Time Warping with Constraints

1: procedure ConstrainedDTW(X, Y , d, i, j)
2: Ź TOPCs X and Y with M and N points, compared with metric d. Return

optimal path with the constraint that xi matches to xj
3: D1 Ð DTWprX0, X1, ...Xis, rY0, Y1, ..., Yjs, dq
4: D2 Ð DTWprXi, Xi`1, ...XM s, rYj, Yj`1, ..., YN s, dq
5: return D1`D2´ dpXi, Yjq Ź dpXi, Yjq was double counted
6: end procedure

Proof: To see this, note that the optimal IBDTW warping path W˚ has the
following cost cpW˚

q

cpW˚
q “

ÿ

pxi,yjq,px1,y1qPW˚

|dXpxi, x
1
q ´ dY pyj, y

1
q| (5.12)

which can be rewritten as

cpW˚
q “

1

2

ÿ

pxi,yjqPW˚

ÿ

px1,y1qPW˚

|dXpxi, x
1
q,´dY pyj, y

1
q| (5.13)

since if px1, y1q “ pxi, yjq then the cost is zero, all other terms counted twice. Now

153

TOPC 1

TOPC 2

Figure 5.4: IBDTW example. The optimal warping path found by Algorithm 5 is
drawn in cyan on top of the CSTWM. Based on this, points which are in correspon-
dence are drawn with the same color in the lower right figure. Though time-ordered
point cloud 2 has more points towards the beginning and fewer points towards the
end than time-ordered point cloud 1, correct regions are put into correspondence
with each other.

154

TOPC 2

TOPC 1

Figure 5.5: An example of Algorithm 5 between two curves which are not isome-
tries. The result degrades gracefully.

fix an xi and yj. Then the sum of the terms of the form |dXpxi, x
1q ´ dY pyj, y

1q| is
simply the L1 warping distance between 1D time series which are the ith row of dX ,
dXri, :s and the jth row of dY , dY rj, :s under the warping W˚. Note that the DTW
Distance between dXri, :s and dY rj, :s is at most the L1 warping distance under W˚,
and is potentially lower since we are computing them greedily only between xi and
yj, ignoring all other constraints. Hence, the sum of the terms |dXpxi, x

1q´dY pyj, y
1q|

is lower bounded by Line 8 in Algorithm 5. �
One subtlety is that although we have shown that the cost DrM,N s returned

by Algorithm 5 lower bounds cpW˚
q, the cost of the warping path Ŵ obtained by

backtracing through D has a cost which is greater than or equal to the optimal
warping path: cpŴq ě cpW˚

q. This is because D was computed in a greedy manner

155

Algorithm 5 Isometry Blind Dynamic Time Warping Greedy Lower Bound

1: procedure IBDTW(X, Y , dX , dY) Ź TOPCs X and Y with M and N
points, metrics dX and dY

2: D Ð

0 8 . . . 8
8 0 . . . 0
...

... . . .
...

8 0 . . . 0
looooooooomooooooooon

N`1

,

/

/

/

.

/

/

/

-

M`1 Ź dynamic programming Matrix

3: C Ð

0 0 . . . 0
0 0 . . . 0
... 0 . . . 0
0 0 . . . 0
looooooomooooooon

N

,

/

/

/

.

/

/

/

-

M Ź Cross-similarity time-warp matrix (CSTWM)

4: for i “ 1 : M do
5: for j “ 1 : N do
6: AÐ rdXpxi, x1q, dXpxi, x2q, . . . , dXpxi, xMqs Ź ith row of dX
7: B Ð rdY pyj, y1q, dY pyj, y2q, . . . , dY pyj, yNqs Ź jth row of dY
8: Cij Ð ConstrainedDTW(A, B, L1, i, j) Ź (Algorithm 4)
9: Dri, js Ð Cij `min tDri´ 1, j ´ 1s, Dri´ 1, js, Dri, j ´ 1su

10: end for
11: end for
12: return p1

2
DrM,N s, Cq Ź Return the cost and the CSTWM

13: end procedure

only considering pairs of rows at any step of the algorithm, which could lead to an
overall suboptimal warping path with respect to all constraints.

Approximating the Gromov-Hausdorff Distance

For a more direct analogy with DTW, Algorithm 5 was designed to lower bound the 1-
stress restricted to warping paths, but a very similar technique could be used to lower
bound the Gromov-Hausdorff Distance restricted to warping paths. The constrained
DTW in the inner loop in Line 8 can be replaced instead with a constrained version of
the Discrete Fréchet Distance to find the maximum distortion induced by putting two
points in correspondence, and the Discrete Fréchet Distance can be run on the final
cross-similarity time-warp matrix. In this work, however, we stick to the 1-stress,
since it gives a more informative overall picture of the full metric space.

156

Figure 5.6: A schematic of the linear systolic array used to compute DTW in
parallel. Elements of the dynamic programming matrix are drawn as circles. Black
arrows are drawn to show dependencies between elements in the dynamic program-
ming matrix, and red arrows show elements which can be computed in parallel if the
processing occurs from the upper left p0, 0q to the lower right pM,Nq.

Computational Issues

The time complexity of this algorithm is OpN2M2q, since an OpMNq dynamic pro-
gramming algorithm is called for each pair pi, jq P p1, 2, . . .Mq ˆ p1, 2, . . . , Nq. This
quartic time complexity can be prohibitively expensive in practice. To mitigate this,
we use a GPU algorithm that was designed by Yu et al. (2005) for Smith Waterman
on gene sequences. It uses what’s known as a linear systolic array to parallelize
computation. In particular, instead of processing the elements of the dynamic pro-
gramming matrix in “raster order” (row by row from left to right across each row),
it is possible to process them along diagonal lines that propagate from the upper left
to the lower right. The dependencies are satisfied simultaneously for all points along
a diagonal line, so these elements can be computed in parallel. This takes OpM`Nq
computation time instead of OpMNq computation time, since there are N `M ´ 1
red lines that need to be computed in sequence, but with enough parallel units the
processing of each red line is Op1q. Furthermore, in the case of Algorithm 5, there
are NM dynamic time warping problems that need to be computed in to obtain the
CSTWM C (all pairs of SSM rows), but these can also be computed in parallel. In
CUDA, for instance, each pixel of C can be computed in its own block, and each el-
ement along a red line can be computed by a thread within the corresponding block.
Therefore, with enough parallel units, Algorithm 5 is itself reduced to OpM ` Nq

157

from OpM2N2q, although in practice we usually don’t have that many parallel units.
On our machine, we see a speedup of between 20-30x of a CUDA implementation of
the linear systolic array over a C implementation of serial DTW.

5.4 Critical Point Topological Time Warping

In addition to the quartic time complexity IBDTW algorithms which work on the
full metric alignment, we can design coarser isometry and parameterization blind
similarity measures by focusing solely on the critical points of SSMs. Recall that
a self-similarity matrix is a discretized version of a self-similarity image, which is
a function defined over the unit square that returns all pairwise distances between
points along a curve (Definition 6). Since a self-similarity image is defined over a 2D
domain, there are three types of critical points that can occur: min (index 0), saddle
(index 1), and max (index 2). Figure 5.1 shows a motivating example suggesting
that critical points in SSMs are preserved under re-parameterizations. Though this
is easier to prove in the continuous setting with self-similarity images, so we move
away momentarily from time ordered point clouds to continuously parameterized
space curves.

5.4.1 SSM Critical Points Are Preserved under Time Warps

Lemma 8. Start with a space curve γ : r0, 1s Ñ Rd and its resulting self-similarity
image Dγ. Given a homeomorphism h : r0, 1s Ñ r0, 1s, which gives rise to a space
curve γh : r0, 1s Ñ Rd and a corresponding self-similarity image Dγh, there is an
induced homeomorphism, h ˆ h from the square to itself from the domain of Dγ to
the domain of Dγh which preserves the critical points of Dγ.

Proof:
We need to show both that a critical point ps˚, t˚q of Dγ maps to a critical point

phps˚q, hpt˚qq in Dγh and that the critical point remains the same index (min, saddle
max). First, note that by the chain rule,

BDγhps, tq

Bs
“
BDγphpsq, hptqq

Bs

Bhpsq

Bs
`

����������BDγphpsq, hptqq

Bt

Bt

Bs
(5.14)

since s and t are independent coordinates, the second term goes to zero. By a
similar argument

BDγhps, tq

Bt
“
BDγphpsq, hptqq

Bt

Bhptq

Bt
(5.15)

Since h a homeomorphism, it is strictly monotonic, and Bhptq
Bt
, Bhptq
Bs
ą 0. Therefore,

BDγhps, tq

Bs
“ 0 ðñ

BDγphpsq, hptqq

Bs
“ 0 (5.16)

158

BDγhps, tq

Bt
“ 0 ðñ

BDγphpsq, hptqq

Bt
“ 0 (5.17)

Or in other words, a critical point ps, tq remains a critical point after the map
phpsq, hptqq.

What remains to be shown is that the index of the critical point remains the
same. To do this, we need to look at the second partial derivatives of the warped
image with respect to its coordinates at a critical point. By the product rule and
chain rule

B2Dγhps, tq

Bs2
“
B2Dγphpsq, hptqq

Bs2

ˆ

Bhpsq

Bs

˙2

`
������������
BDγphpsq, hptqq

Bs

B2hpsq

Bs2
(5.18)

The second term goes to zero since we are assumed to be at a critical point where
BDγphpsq,hptqq

Bs
“ 0. By a similar argument

B2Dγhps, tq

Bt2
“
B2Dγphpsq, hptqq

Bt2

ˆ

Bhptq

Bt

˙2

(5.19)

and

B2Dγhps, tq

BsBt
“
B2Dγhps, tq

BtBs
“
B2Dγphpsq, hptqq

BsBt

ˆ

Bhpsq

Bs

˙ˆ

Bhptq

Bt

˙

(5.20)

Now, let

a “
B2Dγhphpsq, hptqq

Bs2
, b “

B2Dγhphpsq, hptqq

Bt2
, c “

B2Dγhphpsq, hptqq

BsBt
(5.21)

and

j “
Bhpsq

Bs
ą 0, k “

Bhptq

Bt
ą 0 (5.22)

Then showing that the two critical points have the same index amounts to showing
that the sign of the determinant

ˇ

ˇ

ˇ

ˇ

a c
c b

ˇ

ˇ

ˇ

ˇ

(5.23)

is the same as the sign of the determinant of

ˇ

ˇ

ˇ

ˇ

j2a jkc
jkc k2b

ˇ

ˇ

ˇ

ˇ

(5.24)

and that the sign of a is the same as the sign of j2a (the latter which is trivially
true). To check that the signs of the determinants agree, note that the constant term

159

Figure 5.7: Examples of mins, maxes, and saddles in sub-sections of an SSM.
Circles are drawn around the points in each segment where the critical point occurs
to show that tangency is satisfied in both directions.

in the characteristic polynomial of a 2 ˆ 2 matrix is the determinant of the matrix,
which is also the product of the eigenvalues of the matrix λ1λ2. For the matrix
in Equation 5.23, this determinant is ab ´ c2, and for the corresponding matrix in
Equation 5.24, it is j2k2pab ´ c2q. Since j2k2 ą 0, they have the same sign, which
completes the proof. �

5.4.2 The Geometry behind Critical Points in SSMs

A lot of metric information is disregarded when only looking at critical points of
SSMs, so it is useful to consider the geometric features that critical points retain.
Given a self-similarity image D constructed from a Euclidean space curve γ P Rd, if
ps, tq is a critical point of D, this means both that γ at s is tangent to the pd ´ 1q
sphere of radius Dps, tq centered at γptq, and that γ at t is tangent to the pd ´ 1q
sphere of radius Dps, tq centered at γpsq. Figure 5.7 shows an example of a max,
a min, and a saddle occurring from the interaction of two sub-segments of a time-
ordered point cloud in R2. There is also a degenerate min that occurs if the curve
actually crosses itself, though in general position in at least R3, we can eliminate
such crossings and reduce it to the case shown in the center of Figure 5.7. The

160

value Dps, tq at the critical point indicates how close or far the curve gets at this
critical time. It can be verified that all of the critical points in the Figure 8 example
(Figure 5.1) behave like the examples in Figure 5.7.

The min and max scenarios are rather intuitive, but the saddle point is interesting.
As Figure 5.7 shows, moving away from the critical point along the red segment gets
closer to the critical point on the blue segment, while moving away from the critical
point on the blue segment actually gets further away from the critical point on the
red segment. If enough mins and maxes are present in the SSM, the Poincaré-Hopf
theorem guarantees that a certain number of these features will also exist on the curve
(Milnor (1997)). In particular, since a self-similarity image is defined on a topological
disc, the Euler characteristic of its domain is 1, so this implies that χ0´χ1`χ2 “ 1
3, or that χ1 “ χ0 ` χ2 ´ 1. This could be of independent theoretical interest.

5.4.3 Quantifying with Persistence of Sublevelset Filtrations

We can use the persistence algorithm (Algorithm 1) to quantify the critical points in
an SSM using persistent H0 (connected components). To do this, we need to turn the
SSM into a simplicial complex, and we need to come up with a valid filtration over
it. To turn it into a simplicial complex, we triangulate the domain. Each element of
an SSM has up to eight neighbors. We always include edges between the neighbors
above, below, left, and right. To determine which diagonal neighbors are included,
we add the diagonal edges which are the closest to aligning with the image gradient,
which can help when using discrete algorithms to estimate flows between critical
points (Edelsbrunner et al. (2001)). Triangles are included between three points
whose pairwise edges are all included. Figure 5.8 shows an example triangulation of
the SSM from 20 point sampled from a figure-8 curve γ8. Note that we only include
one point on the diagonal, as the diagonal is a degenerate, non-isolated minimum.
We connect this point to all of the points on the diagonal directly next to the main
diagonal. Also, we only triangulate the upper triangular part of the matrix, since an
SSM is symmetric and the lower triangular part is redundant.

To build a filtration over the above triangulation, we use the sublevelset filtration,
sometimes referred to as a “watershed method.” Intuitively, the number of isolated
pools of water are tracked as the water level rises. New pools form when the water
passes over minima, and pools merge together when the water passes over a saddle
point. More formally, the algorithm proceeds as follows:

1. Sort all of the points of the SSM D in ascending order. This takes time
OpN2 logpNqq for an N ˆN SSM

2. Add vertices to the filtration in increasing order of value in D. The moment
that two vertices of an edge are added, add that edge, and the moment that

3 Where χ0 is the number of mins, χ1 is the number of saddle points, and χ2 is the number of
maxes

161

Figure 5.8: An example of building a triangle mesh on top of an SSM. Local maxes
are drawn in red, local mins are drawn in blue, and saddle points are drawn in green.
Only one point is used for the entire diagonal, as it is a degenerate, non-isolated
minimum.

all three edges of a triangle are added, add that triangle. Each persistent H0

class is associated with a unique local minimum in the image. A tree structure
that records the merge events for this filtration is known as a “join tree” (Carr
et al. (2003)).

3. Repeat steps 1 and 2, but sort the points in descending order, so that the pixels
in D are sorted from largest to smallest value. In this case, each persistent H0

class is associated with a local maximum. This is referred to as a “superlevelset
filtration.” A tree structure which records the merge events for this filtration
is known as a “split tree” (Carr et al. (2003)).

This can be done much faster than higher homology, since all that’s needed are
connected components (the “pools” of water), which can be tracked by union find
at a cost of OpN2αpN2qq. Hence, the dominant cost is for a global sort (though
there is a recent output sensitive algorithm by Raichel and Seshadhri (2016) that
can avoid the global sort). Note that the death of a connected component is always

162

Figure 5.9: An example of sub and superlevelset filtrations on the SSM of a point
cloud sampled from a circle. There is a degenerate non-isolated maximum in the
self-similarity image of a circle at a diagonal offset of π, and there is also a non-
isolated minimum near the diagonal. These both cause a lot of spurious critical
points when computed numerically on a discrete SSM, but these spurious points
have low persistence. There is one max and one min with infinite persistence (not
drawn), and there is one min with persistence 2 which is born either in the upper
right corner or somewhere on the main diagonal, depending on numerics, and which
dies at a saddle point on the middle maximum line at a height of 2 (the diameter of
the circle).

paired with the most recent birth (Line 24, Algorithm 1). If two critical points
exchange height values, then birth/death pairings could change in the associated
tree structures, but the persistence measures are stable. Furthermore, even if the
critical points change locations in the SSM due to an instability, such as degenerate
critical points along a near constant diagonal, which can occur for circular regions
(Figure 5.9), the persistence measure is still stable. Hence, this is a natural choice
for quantifying critical points.

Figure 5.10 and Figure 5.11 show two examples of persistence diagrams built off
of SSMs. Note that the birth times of maxes from the superlevelset filtrations (red
points) occur at larger heights than the death times, so the superlevelset diagram
resides below the diagonal.

Matching Diagrams

To come up with a similarity score between the persistence diagrams sub/super-
levelset filtrations of SSMs between two point clouds, we use the L2 Wasserstein
Distance (Definition 23). In particular, we report the sum of d2

W between the min
diagrams and the max diagrams for a total cost. Figure 5.12 shows an example of
the optimal bipartite matching found between a perturbed version of a Figure 8 and
an unperturbed version. Note that a few of the points in the persistence diagrams
of the unperturbed version have multiplicity greater than 1, so they get matched to

163

Figure 5.10: An example of sub and superlevelset filtrations on the SSM of a point
cloud sampled from a Figure 8. Note that some of the persistence diagram points
have multiplicity 2 due to uniform sampling and symmetries in the Figure 8.

Figure 5.11: An example of sub and superlevelset filtrations on the SSM of a point
cloud sampled from a Lissajous curve.

more than one point in the perturbed version.

5.5 Synthetic Experiments

So far, we have provided a number of illustrations of our algorithms, but a more com-
prehensive assessment of their performance is needed. To test the IBDTW approx-
imation algorithm and the SSM critical point algorithms, we devise a classification
experiment with 9 families of time-ordered point clouds, as shown in Figure 5.13.
For each type of curve, we sample under 60 different parameterizations, for a total
of 540 time-ordered point clouds. To create different parameterizations, we create
a dictionary of basic warping paths as in Zhou and De la Torre (2016), and we use
random convex combinations of the dictionary elements to create new warping paths
(Figure 5.14). We then randomly translate/rotate the resulting time-ordered point
clouds.

164

Figure 5.12: An example of Wasserstein matchings of persistence diagrams of the
sub/superlevelset filtrations on SSMs between a Figure 8 and a warped Figure 8.
Points for the original Figure 8 are drawn as dots, and points for the warped version
are drawn as Xs.

Figure 5.13: The 9 different families of synthetic curves we use in our synthetic
isometry blind time warping experiment.

165

Polynomial Exponential/Logarithmic Hyperbolic Tangent / Inverse

(a) Warping path dictionary (b) An example warping path

Figure 5.14: Basis functions for random synthetic warping paths, and an example
random synthetic warping path constructed from a convex combination of 3 elements
in this basis.

Figure 5.15: Confusion matrices for the classification problem of synthetic
rotated/translated/re-parameterized curves.

166

Figure 5.16: Examples of distorted Figure 8 time-ordered point clouds. Control
points for the distortion are drawn as red dots. The ratio of the maximum displace-
ment to the diameter, r “ |X ´X 1|8{dpXq, is reported.

Figure 5.17: Precision-recall curves on the classification problem of synthetic
rotated/translated/re-parameterized time-ordered point clouds. The left figure
shows the results for re-parameterization only, while the right figure shows the results
with displacements on top of re-parameterizations.

To classify the time-ordered point clouds, we compute the alignment cost from
Algorithm 5, as well as the Wasserstein distance of the critical point diagrams in
Section 5.4.3. We also compare to a naive L2 distance between SSMs, mirroring what
we did with cover songs in Chapter 3, and we compare to the Earth Mover’s Distance
(Rubner et al. (2000)) between the D2 histograms of pairwise distances. Figure 5.15
shows the confusion matrices obtained in this experiment, and Figure 5.17a shows the
associated precision-recall curves. Encouragingly, both of our algorithms do better
than naive approaches. In theory, the performance of the sublevelset critical point
technique should be perfect if no two persistence diagrams in the original family of
curves are the same. In practice, because the time-ordered point clouds are discretely
sampled, this induces a discretization on the SSM which may change the location and
sampling of the critical points. Also, although the critical point algorithm performs
slightly better than the IBDTW, the critical point algorithm does not provide a

167

warping path, so it is not possible to align the time series. In this way, the two
techniques are complementary to each other.

Finally, to assess the robustness of our algorithms to noise, we simulate random
displacements on top of the re-parameterization/rotation/translation. Figure 5.16
shows an example, where the mean ratio between the maximum displacement of a
point and the diameter of the time-ordered point cloud over all 540 time-ordered
point clouds is 0.24. The results certainly degrade, but not appreciably.

5.6 Future Work

Unlike the previous two chapters, this chapter does not yet have a real world applica-
tion. However, it is our belief that these techniques can be applied to real datasets on
multimodal time warping, such as those shown by Trigeorgis et al. (2016). Because
the scales and extrinsic geometry of the time-ordered point clouds across modalities
may be different, however, we may need to do some more preprocessing. One ap-
proach could be to try diffusion maps as a preprocessing step. We would also like
to examine whether the IBDTW algorithm in particular can be applied to SSMs if
they are turned into binary matrices, where each pixel in each row is a +1 if and
only if the point directly to the right is greater, and 0 otherwise. In other words,
turn each row into an indicator function of whether the time-ordered point cloud is
moving away from or towards the corresponding point. This is obviously now scale
invariant, but some experimentation would be needed to determine whether it is still
discriminating enough.

168

Appendix A

Curvature And Torsion of Space Curves

We found it necessary to put all of these definitions in one place, and to prove the
formulas we used in the cover songs chapter

A.0.1 Basic Definitions

Given a space curve γptq : r0, as Ñ Rd (the curve is parameterized from t “ 0 to
t “ a and has d coordinates), the velocity vector of the curve can be calculated as

e1ptq “ γ
1
ptq (A.1)

Let us assume, for the moment, that γpsq is parameterized by arc-length; that is,
the s corresponds to the arc length traveled over the interval r0, ss (as a convention we
will switch the parameter from t to s under this assumption). Another way of saying
this is that |e1psq|

2 “ 1, or the curve moves along at unit speed as the parameter is
increased. In this case, the curvature vector is defined as

e2psq “ γ
11
psq (A.2)

The curvature vector is always orthogonal to the velocity vector in the case of
arc-length parameterization. Intuitively, if the curve is moving along at a unit speed
with respect to the parameter, then there is no tangential acceleration, so the second
derivative along the tangent is zero. To see this mathematically, use the fact that
arc-length parameterized curves have |γ 1psq|2 “ 1, which can also be written as

γ 1psq ¨ γ 1psq “ 1 (A.3)

Using implicit differentiation with respect to s on both sides of the equation yields

2γ 11psq ¨ γ 1psq “ 0 (A.4)

169

Hence proving they are orthogonal. Additionally, the magnitude of the curvature
vector

κ “ |γ 11psq| (A.5)

is equal to the the inverse radius of the best fit circle, also known as the osculating
circle, at a point. To see this, construct a circle of radius 1

κ
which is parameterized

by arc length:

γcptq “
1

κ
pcosp2πκtq, sinp2πκtqq (A.6)

It is then easily verified that |γ 1cptq| “ |γ
1ptq| “ 1 and |γ 11c ptq| “ κ “ |γ 11psq|, so the

circle matches the curve up to a second order at the point s. κ is referred to as the
unsigned curvature of the curve, and as shown by the discussion above, it measures
how much a curve bends away from making a straight line.

If an arc-length parameterized curve is derived a third time, then what results is
known as the torsion vector

e3psq “ γ
111
psq (A.7)

As with curvature, unsigned torsion τ , is the magnitude of this vector

τ “ |γ 111psq| (A.8)

and it measures the degree to which a curve is nonplanar. As such, this vector is
always zero for plane curves. For space curves, we can continue this process and get
higher and higher order numbers, which are all invariant to isometries, and hence
make good candidates of numbers that could be used to match cover songs. In fact,
by the fundamental theorem of curve analysis, all such numbers are sufficient to
reconstruct a curve up to isometries (Toponogov (2006)).

A.0.2 Generalizing Beyond Arc-Length Parameterizations

Most curves are not parameterized by arc-length automatically, and it is useful
to derive expressions for curvature and torsion which do not require explicit re-
parameterization, as numerical re-parameterization may be difficult and susceptible
to noise in practice. To see what these more general expressions might be, start
with an arc-length parameterized curve γpsq, and re-parameterize it with a function
s “ hptq to get a curve γhptq so that

γhptq “ γphptqq (A.9)

For simplicity of notation, let γ 1, γ 11, and γ 111 denote the first three vector deriva-
tives of γ with respect to s and 9γh, :γh, and ;γh denote the first three vector derivatives
of γh with respect to t

170

9γhptq “ γ
1
phptqqh1ptq (A.10)

and

:γhptq “ γ
11
phptqqh1ptq2 ` γ 1phptqqh2ptq (A.11)

Since γ is arc-length parameterized, |γ 1phptqq| “ 1, so | 9γhptq| “ h1ptq. Thus, the
above equations can be written as

9γhptq “ γ
1
phptqq| 9γhptq| (A.12)

and

:γhptq “ γ
11
phptqq| 9γhptq|

2
` γ 1phptqqh2ptq (A.13)

The unit-speed velocity vector e1phptqq “ γ
1phptqq, is therefore

e1phptqq “
9γptq

| 9γptq|
(A.14)

Now, to compute e2phptqq, start by subtract from both sides of Equation A.13 the
projection onto the velocity component 9γhptq, so that only an acceleration component
is left, and solve for the arc-length parameterized curvature vector γ 11phptqq:

:γhptq ´
:γhptq ¨ 9γhptq

| 9γhptq|2
9γhptq “ γ

11
phptqq| 9γhptq|

2 (A.15)

the γ 1 term on the right hand side drops out since γ 1phptqq ¨ γ 11phptqq “ 0, and so
γ 1phptqq ¨ :γhptq “ 0. Re-arranging and making common denominators, we get

e2phptqq “ γ
11
phptqq “

| 9γhptq|
2 :γhptq ´ p :γhptq ¨ 9γhptqq 9γhptq

| 9γhptq|4
(A.16)

As a sanity check, if hptq “ t so γh is arc-length parameterized, then this entire
expression reduces to :γhptq.

Written to avoid square roots (which can save computation), the expression is

e2phptqq “ γ
11
phptqq “

p 9γhptq ¨ 9γhptqq :γhptq ´ p :γhptq ¨ 9γhptqq 9γhptq

p 9γhptq ¨ 9γhptqq2
(A.17)

To derive the magnitude only (unsigned curvature) of this vector, compute

|γ 11phptqq| “
a

γ 11phptqq ¨ γ 11phptqq (A.18)

which is

171

d

| 9γhptq|4p :γhptq ¨ :γhptqq ´ 2| 9γhptq|2p 9γhptq ¨ :γhptqq ` p 9γhptq ¨ :γhptqqp 9γhptq ¨ 9γhptqq

| 9γhptq|8

(A.19)
after some simplification, this turns into

κ “ |γ 11phptqq| “

a

| 9γhptq|2| :γhptq|2 ´ p 9γhptq ¨ :γhptqq2

| 9γhptq|3
(A.20)

which may be a more familiar expression for some readers. In particular, the
widely cited work of Mokhtarian and Mackworth (1986) on curvature scale space
gives the equation for signed curvature of a 2D curve γptq “ pxptq, yptqq

x1y2 ´ y1x2

px12 ` y12q3{2
(A.21)

where the convention is that counter-clockwise curvature has a positive sign and
clockwise curvature has a negative sign. Plugging in γptq “ pxptq, yptqq into Equa-
tion A.20, we get

κ “

a

px12 ` y12qpx22 ` y22q ´ px1x2 ` y1y2q2

px12 ` y12q3{2
“

a

px1y2 ´ y1x2q2

px12 ` y12q3{2
“
|x1y2 ´ y1x2|

px12 ` y12q3{2

(A.22)
So Equation A.21 agrees with Equation A.20 up to a sign. To see that positive

signs correspond to counter-clockwise turns upon removing the absolute value from
the numerator of Equation A.22, note that the determinant of the matrix |γ1ptqγ2ptq|
is positive for counter-clockwise turns. Indeed,

ˇ

ˇ

ˇ

ˇ

x1 x2

y1 y2

ˇ

ˇ

ˇ

ˇ

“ x1y2 ´ x2y1 (A.23)

which checks out.
Let’s now continue this line of thought for torsion, and then a pattern will emerge.

First, differentiate Equation A.11 to get

;γhptq “ γ
111
phptqqh1ptq3 ` γ 11phptqqp2h2ptq ` h2ptqh1ptqq ` γ 1phptqqh3ptq (A.24)

Now, since e1phptqq K e2phptqq (γ 1phptqq K γ 11phptqq), we can re-arrange Equa-
tion A.24 and project out e1 and e2 to get

e3phptqq “ γ
111
phptqq “

1

|γ 1phptqq|3

¨

˚

˚

˝

;γhptq ´
;γhptq ¨ e1phptqq

|e1phptqq|2
e1phptqq

´
;γhptq ¨ e2phptqq

|e2phptqq|2
e2phptqq

˛

‹

‹

‚

(A.25)

172

And in general

ekphptqq “
1

|γ 1phptqq|k

˜

γkhptq ´
k´1
ÿ

j“1

γkhptq ¨ ejphptqq

|ejphptqq|2
ejphptqq

¸

(A.26)

This lends itself to a nice recursive computation

173

Bibliography

Adachi, M. (2012), Embeddings and immersions, American Mathematical Soc.

Agarwal, P. K., Fox, K., Nath, A., Sidiropoulos, A., and Wang, Y. (2015), Computing
the Gromov-Hausdorff Distance for Metric Trees, pp. 529–540, Springer Berlin
Heidelberg, Berlin, Heidelberg.

Agarwal, P. K., Fox, K., Pan, J., and Ying, R. (2016), “Approximating Dynamic
Time Warping and Edit Distance for a Pair of Point Sequences,” in 32nd Interna-
tional Symposium on Computational Geometry (SoCG 2016), eds. S. Fekete and
A. Lubiw, vol. 51 of Leibniz International Proceedings in Informatics (LIPIcs), pp.
6:1–6:16, Dagstuhl, Germany, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik.

Allmen, M. and Dyer, C. R. (1990), “Cyclic motion detection using spatiotemporal
surfaces and curves,” in Pattern Recognition, 1990. Proceedings., 10th Interna-
tional Conference on, vol. 1, pp. 365–370, IEEE.

Alt, H. and Godau, M. (1995), “Computing the Fréchet distance between two polyg-
onal curves,” International Journal of Computational Geometry & Applications,
5, 75–91.

Atanbori, J., Cowling, P., Murray, J., Colston, B., Eady, P., Hughes, D., Nixon, I.,
and Dickinson, P. (2013), “Analysis of bat wing beat frequency using Fourier trans-
form,” in International Conference on Computer Analysis of Images and Patterns,
pp. 370–377, Springer.

Averbuch-Elor, H. and Cohen-Or, D. (2015), “RingIt: Ring-Ordering Casual Photos
of a Temporal Event.” ACM Trans. Graph., 34, 33.

Barnes, C., Shechtman, E., Finkelstein, A., and Goldman, D. (2009), “PatchMatch:
a randomized correspondence algorithm for structural image editing,” ACM Trans-
actions on Graphics-TOG, 28, 24.

Bartsch, M. A. and Wakefield, G. H. (2001), “To catch a chorus: Using chroma-based
representations for audio thumbnailing,” in Applications of Signal Processing to
Audio and Acoustics, 2001 IEEE Workshop on the, pp. 15–18, IEEE.

174

Bauer, U. (2015–2017), “Ripser: a lean C++ code for the computation of Vi-
etoris–Rips persistence barcodes,” http://ripser.org.

Belkin, M. and Niyogi, P. (2003), “Laplacian eigenmaps for dimensionality reduction
and data representation,” Neural computation, 15, 1373–1396.

Bello, J. P. (2007), “Audio-Based Cover Song Retrieval Using Approximate Chord
Sequences: Testing Shifts, Gaps, Swaps and Beats.” in ISMIR, vol. 7, pp. 239–244.

Bello, J. P. (2009), “Grouping recorded music by structural similarity,” Int. Conf.
Music Inf. Retrieval (ISMIR-09).

Bello, J. P. (2011), “Measuring structural similarity in music,” IEEE Transactions
on Audio, Speech, and Language Processing, 19, 2013–2025.

Bello, J. P., Daudet, L., Abdallah, S., Duxbury, C., Davies, M., and Sandler, M. B.
(2005), “A tutorial on onset detection in music signals,” IEEE Transactions on
speech and audio processing, 13, 1035–1047.

Bendich, P., Galkovskyi, T., and Harer, J. (2011), “Improving homology estimates
with random walks,” Inverse Problems, 27, 124002.

Bendich, P., Gasparovic, E., Harer, J., and Tralie, C. (2016), “Geometric Models
for Musical Audio Data,” in Proceedings of the 32st International Symposium on
Computational Geometry (SOCG).

Berger, M., Nonato, L. G., Pascucci, V., and Silva, C. T. (2010), “Fiedler trees for
multiscale surface analysis,” Computers & Graphics, 34, 272–281.

Berndt, D. J. and Clifford, J. (1994), “Using Dynamic Time Warping to Find Pat-
terns in Time Series.” in KDD workshop, vol. 10, pp. 359–370, Seattle, WA.

Bertin-Mahieux, T., Ellis, D. P., Whitman, B., and Lamere, P. (2011), “The Million
Song Dataset.” in ISMIR, vol. 2, p. 10.

Besl, P. J. and McKay, N. D. (1992), “Method for registration of 3-D shapes,” in
Robotics-DL tentative, pp. 586–606, International Society for Optics and Photon-
ics.

Beygelzimer, A., Kakade, S., and Langford, J. (2006), “Cover trees for nearest neigh-
bor,” in Proceedings of the 23rd international conference on Machine learning, pp.
97–104, ACM.

Böck, S. and Widmer, G. (2013), “Maximum filter vibrato suppression for onset
detection,” in Proc. of the 16th Int. Conf. on Digital Audio Effects (DAFx).
Maynooth, Ireland (Sept 2013).

175

http://ripser.org

Bogdanov, D., Wack, N., Gómez, E., Gulati, S., Herrera, P., Mayor, O., Roma, G.,
Salamon, J., Zapata, J. R., and Serra, X. (2013), “Essentia: An Audio Analysis
Library for Music Information Retrieval.” in ISMIR, pp. 493–498, Citeseer.

Bogert, B. P., Healy, M. J., and Tukey, J. W. (1963), “The quefrency alanysis of time
series for echoes: Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe
cracking,” in Proceedings of the symposium on time series analysis, vol. 15, pp.
209–243, chapter.

Boissonnat, J.-D., Karthik, C., and Tavenas, S. (2016), “Building efficient and com-
pact data structures for simplicial complexes,” Algorithmica, pp. 1–38.

Bouaziz, S., Tagliasacchi, A., and Pauly, M. (2013), “Sparse iterative closest point,”
in Computer graphics forum, vol. 32, pp. 113–123, Wiley Online Library.

Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2006), “Generalized multidi-
mensional scaling: a framework for isometry-invariant partial surface matching,”
Proceedings of the National Academy of Sciences, 103, 1168–1172.

Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2009), “Numerical Geometry
of Non-Rigid Shapes,” Monographs in Computer Science (.

Bronstein, A. M., Bronstein, M. M., and Kimmel, R. (2010), “The video genome,”
arXiv preprint arXiv:1003.5320.

Broomhead, D. S. and King, G. P. (1986), “Extracting qualitative dynamics from
experimental data,” Physica D: Nonlinear Phenomena, 20, 217–236.

Buades, A., Coll, B., and Morel, J.-M. (2005), “A non-local algorithm for image
denoising,” in 2005 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’05), vol. 2, pp. 60–65, IEEE.

Bubenik, P. (2015), “Statistical topological data analysis using persistence land-
scapes.” Journal of Machine Learning Research, 16, 77–102.

Callahan, P. B. and Kosaraju, S. R. (1995), “A decomposition of multidimensional
point sets with applications to k-nearest-neighbors and n-body potential fields,”
Journal of the ACM (JACM), 42, 67–90.

Carr, H., Snoeyink, J., and Axen, U. (2003), “Computing contour trees in all dimen-
sions,” Computational Geometry, 24, 75–94.

Carrière, M., Oudot, S. Y., and Ovsjanikov, M. (2015), “Stable topological signatures
for points on 3d shapes,” in Computer Graphics Forum, vol. 34, pp. 1–12, Wiley
Online Library.

176

Casey, M. and Slaney, M. (2006), “The importance of sequences in musical similar-
ity,” in Acoustics, Speech and Signal Processing, 2006. ICASSP 2006 Proceedings.
2006 IEEE International Conference on, vol. 5, pp. V–V, IEEE.

Cavanna, N. J., Jahanseir, M., and Sheehy, D. R. (2015), “A Geometric Perspective
on Sparse Filtrations,” in Proceedings of the Canadian Conference on Computa-
tional Geometry.

Chen, C. and Edelsbrunner, H. (2011), “Diffusion runs low on persistence fast,” in
2011 International Conference on Computer Vision, pp. 423–430, IEEE.

Chen, C. and Freedman, D. (2011), “Hardness results for homology localization,”
Discrete & Computational Geometry, 45, 425–448.

Chen, N., Li, W., and Xiao, H. (2017), “Fusing similarity functions for cover song
identification,” Multimedia Tools and Applications, pp. 1–24.

Chen, Y. and Medioni, G. (1992), “Object modelling by registration of multiple
range images,” Image and vision computing, 10, 145–155.

Chung, F. R. (1997), Spectral graph theory, vol. 92, American Mathematical Soc.

Cohen-Steiner, D., Edelsbrunner, H., and Harer, J. (2007), “Stability of persistence
diagrams,” Discrete & Computational Geometry, 37, 103–120.

Cohen-Steiner, D., Edelsbrunner, H., Harer, J., and Mileyko, Y. (2010), “Lipschitz
functions have L p-stable persistence,” Foundations of computational mathematics,
10, 127–139.

Coifman, R., Rokhlin, V., and Wandzura, S. (1993), “The fast multipole method
for electromagnetic scattering calculations,” in Antennas and Propagation Society
International Symposium, 1993. AP-S. Digest, pp. 48–51, IEEE.

Coifman, R. R. and Lafon, S. (2006), “Diffusion maps,” Applied and computational
harmonic analysis, 21, 5–30.

Cutler, R. and Davis, L. S. (2000), “Robust real-time periodic motion detection,
analysis, and applications,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 22, 781–796.

De Cheveigné, A. and Kawahara, H. (2002), “YIN, a fundamental frequency estima-
tor for speech and music,” The Journal of the Acoustical Society of America, 111,
1917–1930.

De la Porte, J., Herbst, B., Hereman, W., and Van Der Walt, S. (2008), “An in-
troduction to diffusion maps,” in The 19th Symposium of the Pattern Recognition
Association of South Africa, Citeseer.

177

De Luca, A., Hang, A., Brudy, F., Lindner, C., and Hussmann, H. (2012), “Touch
me once and i know it’s you!: implicit authentication based on touch screen pat-
terns,” in Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, pp. 987–996, ACM.

de Silva, V., Skraba, P., and Vejdemo-Johansson, M. (2012), “Topological analysis
of recurrent systems,” in Workshop on Algebraic Topology and Machine Learning,
NIPS.

Degara, N., Rúa, E. A., Pena, A., Torres-Guijarro, S., Davies, M. E., and Plumb-
ley, M. D. (2012), “Reliability-informed beat tracking of musical signals,” IEEE
Transactions on Audio, Speech, and Language Processing, 20, 290–301.

Delbracio, M. and Sapiro, G. (2015), “Removing camera shake via weighted fourier
burst accumulation,” IEEE Transactions on Image Processing, 24, 3293–3307.

Deliyski, D. D., Petrushev, P. P., Bonilha, H. S., Gerlach, T. T., Martin-Harris,
B., and Hillman, R. E. (2007), “Clinical implementation of laryngeal high-speed
videoendoscopy: challenges and evolution,” Folia Phoniatrica et Logopaedica, 60,
33–44.

Dey, T. K., Hirani, A. N., and Krishnamoorthy, B. (2011), “Optimal homologous cy-
cles, total unimodularity, and linear programming,” SIAM Journal on Computing,
40, 1026–1044.

Deyle, T., Tralie, C. J., Reynolds, M. S., and Kemp, C. C. (2013), “In-hand radio
frequency identification (RFID) for robotic manipulation,” in Robotics and Au-
tomation (ICRA), 2013 IEEE International Conference on, pp. 1234–1241, IEEE.

Dsilva, C. J., Lim, B., Lu, H., Singer, A., Kevrekidis, I. G., and Shvartsman, S. Y.
(2015), “Temporal ordering and registration of images in studies of developmental
dynamics,” Development, 142, 1717–1724.

Eckmann, J.-P., Kamphorst, S. O., and Ruelle, D. (1987), “Recurrence plots of
dynamical systems,” EPL (Europhysics Letters), 4, 973.

Edelsbrunner, H. (1993), “The union of balls and its dual shape,” in Proceedings of
the ninth annual symposium on Computational geometry, pp. 218–231, ACM.

Edelsbrunner, H. and Harer, J. (2008), “Persistent homology-a survey,” Contempo-
rary mathematics, 453, 257–282.

Edelsbrunner, H. and Harer, J. (2010), Computational topology: an introduction,
American Mathematical Soc.

Edelsbrunner, H., Kirkpatrick, D., and Seidel, R. (1983), “On the shape of a set of
points in the plane,” IEEE Transactions on information theory, 29, 551–559.

178

Edelsbrunner, H., Letscher, D., and Zomorodian, A. (2000), “Topological persistence
and simplification,” in Foundations of Computer Science, 2000. Proceedings. 41st
Annual Symposium on, pp. 454–463, IEEE.

Edelsbrunner, H., Harer, J., and Zomorodian, A. (2001), “Hierarchical Morse com-
plexes for piecewise linear 2-manifolds,” in Proceedings of the seventeenth annual
symposium on Computational geometry, pp. 70–79, ACM.

Eiter, T. and Mannila, H. (1994), “Computing discrete Fréchet distance,” Tech. rep.,
Citeseer.

Eldar, Y. C., Sidorenko, P., Mixon, D. G., Barel, S., and Cohen, O. (2015), “Sparse
phase retrieval from short-time Fourier measurements,” IEEE Signal Processing
Letters, 22, 638–642.

Ellis, D. (2009), “Robust Landmark-Based Audio Fingerprinting,” http://labrosa.

ee.columbia.edu/matlab/fingerprint/.

Ellis, D. P. (2006), “Identifying’cover songs’ with beat-synchronous chroma features,”
MIREX 2006, pp. 1–4.

Ellis, D. P. (2007a), “Beat tracking by dynamic programming,” Journal of New
Music Research, 36, 51–60.

Ellis, D. P. (2007b), “Classifying music audio with timbral and chroma features,”
in ISMIR 2007: Proceedings of the 8th International Conference on Music Infor-
mation Retrieval: September 23-27, 2007, Vienna, Austria, pp. 339–340, Austrian
Computer Society.

Ellis, D. P. (2007c), “The “covers80” cover song data set,” URL: http://labrosa. ee.
columbia. edu/projects/coversongs/covers80.

Ellis, D. P. and Cotton, C. V. (2007), “The 2007 LabROSA cover song detection
system,” MIREX 2007.

Ellis, D. P. and Thierry, B.-M. (2012), “Large-scale cover song recognition using
the 2d fourier transform magnitude,” in The 13th international society for music
information retrieval conference, pp. 241–246.

Erickson, J. and Whittlesey, K. (2005), “Greedy optimal homotopy and homology
generators,” in Proceedings of the sixteenth annual ACM-SIAM symposium on Dis-
crete algorithms, pp. 1038–1046, Society for Industrial and Applied Mathematics.

Foote, J. (2000), “Automatic audio segmentation using a measure of audio novelty,”
in Multimedia and Expo, 2000. ICME 2000. 2000 IEEE International Conference
on, vol. 1, pp. 452–455, IEEE.

179

http://labrosa.ee.columbia.edu/matlab/fingerprint/
http://labrosa.ee.columbia.edu/matlab/fingerprint/

Foucard, R., Durrieu, J.-L., Lagrange, M., and Richard, G. (2010), “Multimodal
similarity between musical streams for cover version detection,” in Acoustics Speech
and Signal Processing (ICASSP), 2010 IEEE International Conference on, pp.
5514–5517, IEEE.

Frank, J., Mannor, S., and Precup, D. (2010), “Activity and Gait Recognition with
Time-Delay Embeddings.” in AAAI, Citeseer.

Fujishima, T. (1999), “Realtime chord recognition of musical sound: A system using
common lisp music,” in Proc. ICMC, vol. 1999, pp. 464–467.

Furui, S. (1986), “Speaker-independent isolated word recognition based on empha-
sized spectral dynamics,” in Acoustics, Speech, and Signal Processing, IEEE In-
ternational Conference on ICASSP’86., vol. 11, pp. 1991–1994, IEEE.

Ghaderian, M., Behrad, A., and Kaboodi, S. A. D. (2011), “Recognition of periodic
motions using one-dimensional contour based features,” in Machine Vision and
Image Processing (MVIP), 2011 7th Iranian, pp. 1–5, IEEE.

Gold, O. and Sharir, M. (2016), “Dynamic Time Warping and Geometric Edit Dis-
tance: Breaking the Quadratic Barrier,” arXiv preprint arXiv:1607.05994.

Goldenberg, R., Kimmel, R., Rivlin, E., and Rudzsky, M. (2005), “Behavior clas-
sification by eigendecomposition of periodic motions,” Pattern Recognition, 38,
1033–1043.

Gómez, E. (2006), “Tonal description of polyphonic audio for music content process-
ing,” INFORMS Journal on Computing, 18, 294–304.

Gouyon, F., Dixon, S., and Widmer, G. (2007), “Evaluating low-level features for
beat classification and tracking,” in Acoustics, Speech and Signal Processing, 2007.
ICASSP 2007. IEEE International Conference on, vol. 4, pp. IV–1309, IEEE.

Griffin, D. and Lim, J. (1984), “Signal estimation from modified short-time Fourier
transform,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 32,
236–243.

Gromov, M. (2007), Metric structures for Riemannian and non-Riemannian spaces,
Springer Science & Business Media.

Haitsma, J. and Kalker, T. (2002), “A highly robust audio fingerprinting system.”
in Ismir, vol. 2002, pp. 107–115.

Hatcher, A. (2002), Algebraic Topology, Cambridge University Press.

Herbst, C. T., Unger, J., Herzel, H., Švec, J. G., and Lohscheller, J. (2016), “Phaseg-
ram analysis of vocal fold vibration documented with laryngeal high-speed video
endoscopy,” Journal of Voice, 30, 771–e1.

180

Herzel, H., Berry, D., Titze, I. R., and Saleh, M. (1994), “Analysis of vocal disor-
ders with methods from nonlinear dynamics,” Journal of Speech, Language, and
Hearing Research, 37, 1008–1019.

Herzel, H., Reuter, R., and Katz, R. A. (1996), “Biphonation in voice signals,” in
AIP Conference Proceedings, vol. 375, pp. 644–657, AIP.

Hsu, E., Pulli, K., and Popović, J. (2005), “Style translation for human motion,” in
ACM Transactions on Graphics (TOG), vol. 24, pp. 1082–1089, ACM.

Huang, P., Hilton, A., and Starck, J. (2010), “Shape similarity for 3D video sequences
of people,” International Journal of Computer Vision, 89, 362–381.

Huang, S., Ying, X., Rong, J., Shang, Z., and Zha, H. (2016), “Camera calibration
from periodic motion of a pedestrian,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, pp. 3025–3033.

Humphrey, E. J., Nieto, O., and Bello, J. P. (2013), “Data Driven and Discriminative
Projections for Large-Scale Cover Song Identification.” in ISMIR, pp. 149–154.

Itakura, F. (1975), “Minimum prediction residual principle applied to speech recogni-
tion,” IEEE Transactions on Acoustics, Speech, and Signal Processing, 23, 67–72.

Iwanski, J. S. and Bradley, E. (1998), “Recurrence plots of experimental data: To
embed or not to embed?” Chaos: An Interdisciplinary Journal of Nonlinear Sci-
ence, 8, 861–871.

Jiang, X., Lim, L.-H., Yao, Y., and Ye, Y. (2011), “Statistical ranking and combina-
torial Hodge theory,” Mathematical Programming, 127, 203–244.

Junejo, I. N., Dexter, E., Laptev, I., and Pérez, P. (2008), “Cross-View Action
Recognition from Temporal Self-similarities,” in Proceedings of the 10th European
Conference on Computer Vision: Part II, pp. 293–306, Springer-Verlag.

Junejo, I. N., Dexter, E., Laptev, I., and Perez, P. (2011), “View-independent action
recognition from temporal self-similarities,” IEEE transactions on pattern analysis
and machine intelligence, 33, 172–185.

Kabsch, W. (1976), “A solution for the best rotation to relate two sets of vectors,”
Acta Crystallographica Section A: Crystal Physics, Diffraction, Theoretical and
General Crystallography, 32, 922–923.

Kaiser, F. and Sikora, T. (2010), “Music Structure Discovery in Popular Music using
Non-negative Matrix Factorization.” in ISMIR, pp. 429–434.

Kantz, H. and Schreiber, T. (2004), Nonlinear time series analysis, vol. 7, Cambridge
university press.

181

Karni, Z. and Gotsman, C. (2000), “Spectral compression of mesh geometry,” in
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 279–286, ACM Press/Addison-Wesley Publishing Co.

Kazhdan, M. (2007), “An approximate and efficient method for optimal rotation
alignment of 3D models,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, 29.

Kendall, M. G. (1938), “A new measure of rank correlation,” Biometrika, 30, 81–93.

Kennel, M. B., Brown, R., and Abarbanel, H. D. (1992), “Determining embedding
dimension for phase-space reconstruction using a geometrical construction,” Phys-
ical review A, 45, 3403.

Kerber, M., Morozov, D., and Nigmetov, A. (2016), “Geometry helps to compare per-
sistence diagrams,” in 2016 Proceedings of the Eighteenth Workshop on Algorithm
Engineering and Experiments (ALENEX), pp. 103–112, Society for Industrial and
Applied Mathematics.

Kim, S., Unal, E., and Narayanan, S. (2008), “Music fingerprint extraction for clas-
sical music cover song identification,” in Multimedia and Expo, 2008 IEEE Inter-
national Conference on, pp. 1261–1264, IEEE.

Krebs, F., Böck, S., and Widmer, G. (2015), “An Efficient State-Space Model for
Joint Tempo and Meter Tracking.” in ISMIR, pp. 72–78.

Kronecker, L. (1884), Näherungsweise ganzzahlige Auflösung linearer Gleichungen.

Kumar, M., Veeraraghavan, A., and Sabharwal, A. (2015), “DistancePPG: Robust
non-contact vital signs monitoring using a camera,” Biomedical optics express, 6,
1565–1588.

Kumdee, O. and Ritthipravat, P. (2015), “Repetitive motion detection for human
behavior understanding from video images,” in Signal Processing and Informa-
tion Technology (ISSPIT), 2015 IEEE International Symposium on, pp. 484–489,
IEEE.

Levenshtein, V. I. (1966), “Binary codes capable of correcting deletions, insertions
and reversals,” in Soviet physics doklady, vol. 10, p. 707.

Levy, O. and Wolf, L. (2015), “Live repetition counting,” in Proceedings of the IEEE
International Conference on Computer Vision, pp. 3020–3028.

Lohscheller, J., Toy, H., Rosanowski, F., Eysholdt, U., and Döllinger, M. (2007),
“Clinically evaluated procedure for the reconstruction of vocal fold vibrations from
endoscopic digital high-speed videos,” Medical image analysis, 11, 400–413.

182

Mahadevan, S. (2008), “Representation discovery using harmonic analysis,” Synthe-
sis Lectures on Artificial Intelligence and Machine Learning, 2, 1–147.

Mahmoudi, M. and Sapiro, G. (2009), “Three-dimensional point cloud recognition
via distributions of geometric distances,” Graphical Models, 71, 22–31.

Marwan, N., Thiel, M., Nowaczyk, N., and Marwan, N. (2000), “Cross Recurrence
Plot Based Synchronization of Time Series,” Nonlinear Processes in Geophysics,
20, 101–107.

Marwan, N., Romano, M. C., Thiel, M., and Kurths, J. (2007), “Recurrence plots
for the analysis of complex systems,” Physics reports, 438, 237–329.

Maurel, P. and Sapiro, G. (2003), “Dynamic shapes average,” .

McFee, B. and Ellis, D. P. (2014), “Analyzing song structure with spectral clus-
tering,” in 15th International Society for Music Information Retrieval (ISMIR)
Conference.

McGuire, G., Azar, N. B., and Shelhamer, M. (1997), “Recurrence matrices and the
preservation of dynamical properties,” Physics Letters A, 237, 43–47.

Mcleod, P. and Wyvill, G. (2005), “A smarter way to find pitch,” in In Proceedings
of the International Computer Music Conference (ICMC’05, pp. 138–141.

Mees, A., Rapp, P., and Jennings, L. (1987), “Singular-value decomposition and
embedding dimension,” Physical Review A, 36, 340.

Mehta, D. D., Deliyski, D. D., Quatieri, T. F., and Hillman, R. E. (2011), “Auto-
mated measurement of vocal fold vibratory asymmetry from high-speed videoen-
doscopy recordings,” Journal of Speech, Language, and Hearing Research, 54, 47–
54.

Miao, E. and Grimm, N. E. (2013), “The Blurred Lines of What Constitutes Copy-
right Infringement of Music: Robin Thicke v. Marvin Gaye’s Estate,” WESTLAW
J. INTELLECTUAL PROP., 20, 1.

Miller, G. A. (1956), “The magical number seven, plus or minus two: some limits on
our capacity for processing information.” Psychological review, 63, 81.

Milnor, J. W. (1997), Topology from the differentiable viewpoint, Princeton University
Press.

Mokhtarian, F. and Mackworth, A. (1986), “Scale-based description and recogni-
tion of planar curves and two-dimensional shapes,” IEEE transactions on pattern
analysis and machine intelligence, pp. 34–43.

183

Mokhtarian, F., Abbasi, S., and Kittler, J. (1996), “Robust and Efficient Shape In-
dexing through Curvature Scale Space,” in Proceedings of the 1996 British Machine
and Vision Conference BMVC, vol. 96.

Müller, M. (2007), Information retrieval for music and motion, vol. 2, Springer.

Müller, M. and Ewert, S. (2011), “Chroma Toolbox: MATLAB implementations
for extracting variants of chroma-based audio features,” in Proceedings of the
12th International Conference on Music Information Retrieval (ISMIR), 2011.
hal-00727791, version 2-22 Oct 2012, Citeseer.

Munkres, J. R. (1975), Topology.

Needleman, S. B. and Wunsch, C. D. (1970), “A general method applicable to the
search for similarities in the amino acid sequence of two proteins,” Journal of
molecular biology, 48, 443–453.

Neubauer, J., Mergell, P., Eysholdt, U., and Herzel, H. (2001), “Spatio-temporal
analysis of irregular vocal fold oscillations: Biphonation due to desynchronization
of spatial modes,” The Journal of the Acoustical Society of America, 110, 3179–
3192.

Nieto, O. and Bello, J. P. (2014), “Music Segment Similarity Using 2D-Fourier Mag-
nitude Coefficients,” in Acoustics, Speech and Signal Processing (ICASSP), 2014
IEEE International Conference on, pp. 664–668, IEEE.

Niyogi, S. A., Adelson, E. H., et al. (1994), “Analyzing and recognizing walking
figures in XYT,” in CVPR, vol. 94, pp. 469–474.

Nolte, D. D. (2010), “The tangled tale of phase space,” Physics today, 63, 33–38.

Osada, R., Funkhouser, T., Chazelle, B., and Dobkin, D. (2002), “Shape distribu-
tions,” ACM Transactions on Graphics (TOG), 21, 807–832.

Osmalsky, J., Embrechts, J.-J., Foster, P., and Dixon, S. (2015), “Combining features
for cover song identification,” in 16th International Society for Music Information
Retrieval Conference.

Osmalsky, J., Van Droogenbroeck, M., and Embrechts, J.-J. (2016), “Enhancing
Cover Song Identification with Hierarchical Rank Aggregation,” in Proceedings of
the 17th International for Music Information Retrieval Conference, pp. 136–142.

Patterson, E. K., Gurbuz, S., Tufekci, Z., and Gowdy, J. N. (2002), “CUAVE: A
new audio-visual database for multimodal human-computer interface research,”
in Acoustics, Speech, and Signal Processing (ICASSP), 2002 IEEE International
Conference on, vol. 2, pp. II–2017, IEEE.

184

Perea, J. A. (2016), “Persistent homology of toroidal sliding window embeddings,”
in Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE International
Conference on, pp. 6435–6439, IEEE.

Perea, J. A. and Carlsson, G. (2014), “A klein-bottle-based dictionary for texture
representation,” International journal of computer vision, 107, 75–97.

Perea, J. A. and Harer, J. (2015), “Sliding windows and persistence: An application
of topological methods to signal analysis,” Foundations of Computational Mathe-
matics, 15, 799–838.

Perea, J. A., Deckard, A., Haase, S. B., and Harer, J. (2015), “Sw1pers: Sliding
windows and 1-persistence scoring; discovering periodicity in gene expression time
series data,” BMC bioinformatics, 16, 257.

Pinkall, U. and Polthier, K. (1993), “Computing discrete minimal surfaces and their
conjugates,” Experimental mathematics, 2, 15–36.

Pinsky, M. A. (2002), Introduction to Fourier analysis and wavelets, vol. 102, Amer-
ican Mathematical Soc.

Plesnik, E., Malgina, O., Tasic, J. F., Tomazic, S., and Zajc, M. (2014), “Detection
and Delineation of the Electrocardiogram Qrs-complexes from Phase Portraits,” .

Plotnik, A. M. and Rock, S. M. (2002), “Quantification of cyclic motion of marine
animals from computer vision,” in OCEANS’02 MTS/IEEE, vol. 3, pp. 1575–1581,
IEEE.

Polana, R. and Nelson, R. C. (1997), “Detection and recognition of periodic, nonrigid
motion,” International Journal of Computer Vision, 23, 261–282.

Qiu, Q., Schutte, H., Gu, L., and Yu, Q. (2003), “An automatic method to quan-
tify the vibration properties of human vocal folds via videokymography,” Folia
Phoniatrica et Logopaedica, 55, 128–136.

Quinton, E., Harte, C., and Sandler, M. (2015), “Extraction of Metrical Structure
from Music Recordings,” in Proc. of the 18th Int. Conference on Digital Audio
Effects (DAFx). Trondheim.

Raichel, B. and Seshadhri, C. (2016), “Avoiding the Global Sort: A Faster Con-
tour Tree Algorithm,” in LIPIcs-Leibniz International Proceedings in Informatics,
vol. 51, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

Reininghaus, J., Huber, S., Bauer, U., and Kwitt, R. (2015), “A stable multi-scale
kernel for topological machine learning,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, pp. 4741–4748.

185

Reuter, M., Wolter, F.-E., and Peinecke, N. (2006), “Laplace–Beltrami spectra as
‘Shape-DNA’of surfaces and solids,” Computer-Aided Design, 38, 342–366.

Rubner, Y., Tomasi, C., and Guibas, L. J. (2000), “The earth mover’s distance as a
metric for image retrieval,” International journal of computer vision, 40, 99–121.

Sakoe, H. and Chiba, S. (1970), “A similarity evaluation of speech patterns by dy-
namic programming,” in Nat. Meeting of Institute of Electronic Communications
Engineers of Japan, p. 136.

Sakoe, H. and Chiba, S. (1978), “Dynamic programming algorithm optimization
for spoken word recognition,” IEEE transactions on acoustics, speech, and signal
processing, 26, 43–49.

Salamon, J., Serrà, J., and Gómez, E. (2012), “Melody, bass line, and harmony repre-
sentations for music version identification,” in Proceedings of the 21st international
conference companion on World Wide Web, pp. 887–894, ACM.

Schödl, A., Szeliski, R., Salesin, D. H., and Essa, I. (2000), “Video textures,” in
Proceedings of the 27th annual conference on Computer graphics and interactive
techniques, pp. 489–498, ACM Press/Addison-Wesley Publishing Co.

Schuldt, C., Laptev, I., and Caputo, B. (2004), “Recognizing human actions: a local
SVM approach,” in Pattern Recognition, 2004. ICPR 2004. Proceedings of the 17th
International Conference on, vol. 3, pp. 32–36, IEEE.

Schwarz, D., Cahen, R., and Britton, S. (2008), “Principles and applications of inter-
active corpus-based concatenative synthesis,” in Journées d’Informatique Musicale
(JIM), pp. 1–1.

Seitz, S. M. and Dyer, C. R. (1997), “View-invariant analysis of cyclic motion,”
International Journal of Computer Vision, 25, 231–251.

Serra, J. (2007), “Music similarity based on sequences of descriptors: tonal features
applied to audio cover song identification,” Department of Information and Com-
munication Technologies, Universitat Pompeu Fabra, Barcelona, Spain.

Serra, J., Gómez, E., Herrera, P., and Serra, X. (2008a), “Chroma binary similar-
ity and local alignment applied to cover song identification,” Audio, Speech, and
Language Processing, IEEE Transactions on, 16, 1138–1151.

Serra, J., Gómez, E., and Herrera, P. (2008b), “Transposing chroma representations
to a common key,” in IEEE CS Conference on The Use of Symbols to Represent
Music and Multimedia Objects, pp. 45–48.

Serra, J., Serra, X., and Andrzejak, R. G. (2009), “Cross recurrence quantification
for cover song identification,” New Journal of Physics, 11, 093017.

186

Serrà, J., Zanin, M., Herrera, P., and Serra, X. (2012), “Characterization and ex-
ploitation of community structure in cover song networks,” Pattern Recognition
Letters, 33, 1032–1041.

Serra, J., Müller, M., Grosche, P., and Arcos, J. L. (2012), “Unsupervised detection
of music boundaries by time series structure features,” in Twenty-Sixth AAAI
Conference on Artificial Intelligence.

Sheehy, D. R. (2013), “Linear-Size Approximations to the Vietoris-Rips Filtration,”
Discrete & Computational Geometry, 49, 778–796.

Silva, D. F., Yeh, C.-C. M., Batista, G. E. d. A. P. A., Keogh, E., et al. (2016),
“SiMPle: assessing music similarity using subsequences joins,” in International
Society for Music Information Retrieval Conference, XVII, International Society
for Music Information Retrieval-ISMIR.

Smith, T. F. and Waterman, M. S. (1981), “Identification of common molecular
subsequences,” Journal of molecular biology, 147, 195–197.

Sprechmann, P., Bronstein, A., Morel, J.-M., and Sapiro, G. (2013), “Audio restora-
tion from multiple copies,” in Acoustics, Speech and Signal Processing (ICASSP),
2013 IEEE International Conference on, pp. 878–882, IEEE.

Stam, C. J. (2005), “Nonlinear dynamical analysis of EEG and MEG: review of an
emerging field,” Clinical Neurophysiology, 116, 2266–2301.

Steenrod, S. E.-N. and Eilenberg, S. (1952), “Foundations of algebraic topology,” .

Takens, F. (1981), “Detecting strange attractors in turbulence,” in Dynamical sys-
tems and turbulence, Warwick 1980, pp. 366–381, Springer.

Taubin, G. (1995), “A signal processing approach to fair surface design,” in Proceed-
ings of the 22nd annual conference on Computer graphics and interactive tech-
niques, pp. 351–358, ACM.

Tavenard, R., Jégou, H., and Lagrange, M. (2012), “Efficient Cover Song Identifica-
tion using approximate nearest neighbors,” .

ten Holt, G. A., Reinders, M. J., and Hendriks, E. (2007), “Multi-dimensional dy-
namic time warping for gesture recognition,” in Thirteenth annual conference of
the Advanced School for Computing and Imaging, vol. 300.

Toponogov, V. A. (2006), Differential geometry of curves and surfaces, Springer.

Tralie, C. (2016), “High-Dimensional Geometry of Sliding Window Embeddings
of Periodic Videos,” in LIPIcs-Leibniz International Proceedings in Informatics,
vol. 51, Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik.

187

Tralie, C. J. and Bendich, P. (2015), “Cover Song Identification with Timbral Shape
Sequences,” in 16th International Society for Music Information Retrieval (IS-
MIR), pp. 38–44.

Trigeorgis, G., Nicolaou, M. A., Zafeiriou, S., and Schuller, B. W. (2016), “Deep
Canonical Time Warping,” .

Tulyakov, S., Alameda-Pineda, X., Ricci, E., Yin, L., Cohn, J. F., and Sebe, N.
(2016), “Self-adaptive matrix completion for heart rate estimation from face videos
under realistic conditions,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pp. 2396–2404.

Turk, M. and Pentland, A. (1991), “Eigenfaces for recognition,” Journal of cognitive
neuroscience, 3, 71–86.

Tzanetakis, G. and Cook, P. (2002), “Musical genre classification of audio signals,”
IEEE Transactions on speech and audio processing, 10, 293–302.

Urbano, J., Lloréns, J., Morato, J., and Sánchez-Cuadrado, S. (2011), “Melodic
similarity through shape similarity,” in Exploring music contents, pp. 338–355,
Springer.

Vejdemo-Johansson, M., Pokorny, F. T., Skraba, P., and Kragic, D. (2015), “Coho-
mological learning of periodic motion,” Applicable Algebra in Engineering, Com-
munication and Computing, 26, 5–26.

Venkataraman, V. and Turaga, P. (2016), “Shape Descriptions of Nonlinear Dynam-
ical Systems for Video-based Inference.” IEEE transactions on pattern analysis
and machine intelligence.

Wadhwa, N., Rubinstein, M., Durand, F., and Freeman, W. T. (2013), “Phase-based
video motion processing,” ACM Transactions on Graphics (TOG), 32, 80.

Wang, A. (2006), “The Shazam music recognition service,” Communications of the
ACM, 49, 44–48.

Wang, A. et al. (2003), “An Industrial Strength Audio Search Algorithm.” in ISMIR,
pp. 7–13, Washington, DC.

Wang, B., Jiang, J., Wang, W., Zhou, Z.-H., and Tu, Z. (2012), “Unsupervised metric
fusion by cross diffusion,” in Computer Vision and Pattern Recognition (CVPR),
2012 IEEE Conference on, pp. 2997–3004, IEEE.

Wang, B., Mezlini, A. M., Demir, F., Fiume, M., Tu, Z., Brudno, M., Haibe-Kains,
B., and Goldenberg, A. (2014), “Similarity network fusion for aggregating data
types on a genomic scale,” Nature methods, 11, 333–337.

188

Wang, P., Abowd, G. D., and Rehg, J. M. (2009), “Quasi-periodic event analysis
for social game retrieval,” in Computer Vision, 2009 IEEE 12th International
Conference on, pp. 112–119, IEEE.

Waterman, M. S. (1995), Introduction to computational biology: maps, sequences and
genomes, CRC Press.

Wehbe, H., Joly, P., and Haidar, B. (2015), “Automatic detection of repetitive actions
in a video,” in Content-Based Multimedia Indexing (CBMI), 2015 13th Interna-
tional Workshop on, pp. 1–6, IEEE.

Whaba, G. (1965), “A least squares estimate of spacecraft attitude,” SIAM Review,
7, 409.

Wilden, I., Herzel, H., Peters, G., and Tembrock, G. (1998), “Subharmonics,
biphonation, and deterministic chaos in mammal vocalization,” Bioacoustics, 9,
171–196.

Wittenberg, T., Moser, M., Tigges, M., and Eysholdt, U. (1995), “Recording, pro-
cessing, and analysis of digital high-speed sequences in glottography,” Machine
vision and applications, 8, 399–404.

Wu, Z., Jiang, S., and Huang, Q. (2009), “Near-duplicate video matching with trans-
formation recognition,” in Proceedings of the 17th ACM international conference
on Multimedia, pp. 549–552, ACM.

Yair, O., Talmon, R., Coifman, R. R., and Kevrekidis, I. G. (2016), “No equations,
no parameters, no variables: data, and the reconstruction of normal forms by
learning informed observation geometries,” arXiv preprint arXiv:1612.03195.

Yang, J., Zhang, H., and Peng, G. (2016), “Time-domain period detection in short-
duration videos,” Signal, Image and Video Processing, 10, 695–702.

Yeh, M.-C. and Cheng, K.-T. (2009), “Video copy detection by fast sequence match-
ing,” in Proceedings of the ACM International Conference on Image and Video
Retrieval, p. 45, ACM.

Ying, R., Pan, J., Fox, K., and Agarwal, P. K. (2016), “A Simple Efficient Approxi-
mation Algorithm for Dynamic Time Warping,” in Proceedings of the 24th ACM
SIGSPATIAL International Conference on Advances in Geographic Information
Systems, GIS ’16, pp. 21:1–21:10, New York, NY, USA, ACM.

Yu, C. W., Kwong, K., Lee, K.-H., and Leong, P. H. W. (2005), “A Smith-Waterman
systolic cell,” in New Algorithms, Architectures and Applications for Reconfigurable
Computing, pp. 291–300, Springer.

189

Yu, G., Sapiro, G., and Mallat, S. (2012), “Solving inverse problems with piecewise
linear estimators: From Gaussian mixture models to structured sparsity,” IEEE
Transactions on Image Processing, 21, 2481–2499.

Yuille, A. L. and Poggio, T. (1985), “Fingerprints theorems for zero crossings,” JOSA
A, 2, 683–692.

Zacharias, S. R., Myer, C. M., Meinzen-Derr, J., Kelchner, L., Deliyski, D. D., and
de Alarcón, A. (2016), “Comparison of Videostroboscopy and High-speed Videoen-
doscopy in Evaluation of Supraglottic Phonation,” Annals of Otology, Rhinology
& Laryngology, p. 0003489416656205.

Zhao, W., Gao, S., and Lin, H. (2007), “A robust hole-filling algorithm for triangular
mesh,” The Visual Computer, 23, 987–997.

Zhou, F. and De la Torre, F. (2016), “Generalized canonical time warping,” IEEE
transactions on pattern analysis and machine intelligence, 38, 279–294.

Zhou, F. and Torre, F. (2009), “Canonical time warping for alignment of human
behavior,” in Advances in neural information processing systems, pp. 2286–2294.

190

Alphabetical Index

Čech Complex, 32–35, 40, 128

Amazon Mechanical Turk, 136, 137
Audio Fingerprinting, 6, 77–80, 83, 87

Shazam, 79, 80, 83
Audio Novelty Functions, 74, 75

Betti number, 30, 31, 37, 39
Blurred Lines, 105

Canonical Correlation Analysis, 146
Chain Complex, 29
Chroma, 76, 77, 83–86, 91, 94, 96,

103–106, 109
Harmonic Pitch Class Profiles

(HPCP), 57, 77, 84, 94–96, 98,
99, 103–105

Community-Accepted Feature Map
(CAFMap), 9

Condorcet paradox, 136, 137
Constant-Q Transform (CQT), 83
Cover Songs, 63, 74, 78, 82–85, 103
Covers 80 Dataset, 99, 103–105, 108
Cross-recurrence plot, 13, 14, 20
Cross-Similarity Matrix (CSM),

11–13, 15, 66, 69–71, 91, 92,
94, 97–99, 108

Cross-Similarity Time-Warp Matrix
(CSTWM), 151, 154, 156, 157

Curl (∇ˆ), 137
Curvature, 106, 107, 169–172

D2 Histogram of Pairwise Distances,
16, 19, 39, 167

Diffeomorphism, 26, 41–43

Diffusion Maps, 16, 19, 47, 54–56,
130, 168

Dynamic Programming, 58, 60–64,
66–68, 75, 156, 157

Dynamic Time Warping, 63–71, 93,
94, 144–147, 151–153, 155–158

Constrained Dynamic Time
Warping, 152

Dynamical System, 40

Eulerian Coordinates, 111, 118, 119,
122, 124

First Last Dynamic Time Warping,
150

Fourier Analysis, 2, 47
Discrete Fourier Transform

(DFT), 47, 49, 50, 52, 72
Fourier Series, 121
Periodic Summation, 121
Short-Time Fourier Transform

(STFT), 9, 72–75
Fréchet Distance, 71, 144, 146

Discrete Fréchet Distance, 71, 156

GPU, 157
Graph Kronecker Sum, 51, 52
Gromov-Hausdorff Distance, 21, 149,

150, 152, 156

High speed glottography, 110
Hodge rank aggregation, 135, 137
Homeomorphism, 25, 71, 148, 149, 158
Homology, 26, 27, 29, 30, 37, 128, 135

Persistent Homology, 31, 35, 135

191

Isometry, 9, 12, 16, 20, 106, 108, 126,
144, 147, 156

Isometry Blind Dynamic Time
Warping, 150–154, 158, 164,
167, 168

Iterative Closest Points, 145, 146

Kappa-packed Curves, 70
Kendall-Tau Score, xiv, 137, 138
Klein Bottle, 34, 36, 52

Laplacian Eigenmaps, 19
Levenshtein Distance, 58–66
Linear systolic array, 157, 158
Loop Ditty, 80, 81

Möbius strip, 22, 110, 122–124, 141
Manifold Learning, 47
Mel-Frequency Cepstral Coefficients

(MFCC), 57, 73, 76, 83–87,
90, 92, 94, 98, 99, 103–106,
108, 109

Metric Distortion, 149, 150

Needleman-Wunsch, 61–63

OR Fusion, 96, 99, 104

p-Stress, 149
Periodic Signal Reordering, 52
Persistence Diagram, 35, 36, 38, 39,

122, 123, 128, 135, 139, 140,
163–165

Wasserstein Distance, 38, 39, 163,
167

Principal Component Analysis
(PCA), 5, 21, 34, 42, 45, 47,
80, 81, 87, 113, 117, 120, 127,
139–142

Procrustes Distance, 145–147

Quasiperiodicity, 43–46, 110, 114, 118,
128–130, 138, 142, 143

Recurrence plot, 13, 19, 46–48
Rips Filtrations, 19

Self-Similarity Matrix (SSM), 11, 13,
46, 55, 58, 84–87, 90–92,
97–99, 103–105, 108, 109, 114,
115, 122, 125, 134, 145, 147,
151, 157, 158, 160–165, 167,
168

Sequence Alignment
Constrained Dynamic Time

Warping, 152
Dynamic Time Warping, 63–71,

93, 94, 144, 145, 147, 151–153,
155–158

First Last Dynamic Time
Warping, 150

Fréchet Distance, 71, 144, 146
Isometry Blind Dynamic Time

Warping, 150–154, 158, 164,
167, 168

Levenshtein Distance, 58–66
Needleman-Wunsch, 61–63

Similarity Network Fusion, 47, 56–58,
85, 94, 96–99, 104, 105, 109

Simplicial Complex, 27–33, 35–37, 161
Smith Waterman Local Alignment,

57, 63, 64, 85, 90–99, 104, 108,
109, 157

Spectrogram, 6, 9, 72, 73, 75, 76
Sphere, 41, 42
Subharmonic nonlinearities, 140–142
Sublevelset Filtration, 161

Taken’s Theorem, 40, 41, 43, 44, 113
The Graph Laplacian, 47–54
Time-Ordered Point Cloud (TOPC),

4–7, 11, 12, 14, 16–21, 27, 31,
63–67, 70, 80, 131, 144,
149–152, 154, 160, 164, 167,
168

Topological Data Analysis, 47, 110
Topological Space, 24, 26
Torsion (Algebraic), 19
Torsion (Geometric), 106–108, 170,

172

192

Torus, 33–35, 43, 52, 122, 123, 128,
138–140

Flat Torus, 43, 122

Vietoris-Rips Complex, 31, 33–35, 56

Vietoris-Rips Filtration, 31, 32, 35, 40
Vocal Folds, 138

Warping Path, 64, 65, 70, 93, 149–151,
153, 155, 156, 166, 168

193

Biography

Christopher Tralie was born in Philadelphia, Pennsylvania in 1989, and he spent
most of his childhood in Fort Washington, PA. He was an avid coder throughout
middle school and high school, and he was a counselor at the summer camp “Fun
with Math, Science, And Computers” sponsored by Temple University. He attended
the PA Governor’s School for the Sciences Summer 2006, and he graduated from
Upper Dublin High School in 2007. He got his bachelor’s degree from Princeton Uni-
versity in 2011 in Electrical Engineering (cum laude) with a certificate in Computer
Science, where he focused on signal processing and computer graphics, and he was
awarded the G. David Forney prize in Signals And Systems. He also regularly tu-
tored multivariable calculus to engineers, he did a robotics REU at Duke University
in 2009, and he was a member of Terrace F. Club (Food = Love).

In 2011, he was awarded the NSF Graduate Fellowship, and he began his Ph.D.
studies at Duke University in Electrical And Computer Engineering. His initial
research was on fusing electro-optical sensors and radar sensors using geometry, and
he also did some work on robotics in healthcare (Deyle et al. (2013)). Halfway
through the third year of his studies, his adviser left Duke. Christopher then received
his master’s degree in ECE and promptly switched his research focus to multimedia
time series analysis, as one of the first graduate students in the Information Initiative
at Duke (IID). He has since published works on automatic cover song identification
(Tralie and Bendich (2015)), periodic videos (Tralie (2016)), and geometric music
structure analysis (Bendich et al. (2016)). Outside of his own research, he supervised
five undergraduate student research projects, and he was awarded the Bass Family
Undergraduate Teaching Fellowship, with which he designed and taught a course
from scratch called “Digital 3D Geometry” to 31 students, which was cross-listed
between CS and math. This course was rated in the top 5% of all spring 2016 courses
university-wide in “quality of course/intellectual stimulation” in student evaluations.

Christopher is part of a very large family with 32 first cousins, most of whom are
in the Philadelphia area. He was the concert master of his high school orchestra, and
he played 2nd violin in the Duke Symphony Orchestra his second year in grad school.
During grad school, he also volunteered with Habitat for Humanity, and he was the
president of the Buddhist Meditation Community At Duke (BMCD) for a semester.
He also skateboarded very poorly at the Durham skatepark for a while until one day
he fell 7 feet in a concrete pool and John Harer encouraged him to quit.

194

	Abstract
	List of Abbreviations
	List of Symbols
	Acknowledgements
	1 Introduction
	1.1 Block Windowing of Time Series/Time-Ordered Point Clouds
	1.1.1 Formal Definitions
	1.1.2 Sliding Window Length and Normalization
	1.1.3 Community-Accepted Feature Maps (CAFMaps)

	1.2 Self-Similarity Matrices (SSMs) And Cross-Similarity Matrices (CSMs)
	1.2.1 Self-Similarity Matrices
	1.2.2 Cross-Similarity Matrices
	1.2.3 Fast Code

	1.3 Geometric Feature Summaries
	1.4 Isometry Blind Time Warping And Alignment
	1.5 Summary of Novel Contributions

	2 Background
	2.1 Topology / Topological Data Analysis
	2.1.1 Simplicial Homology
	2.1.2 Vietoris-Rips Filtrations And Persistent Homology
	2.1.3 Persistence Diagram Comparison And Stability
	2.1.4 Computational Complexity

	2.2 Nonlinear Time Series Analysis / Dynamical Systems
	2.2.1 Takens' Delay Theorem
	2.2.2 Torus State Spaces: Periodicity And Quasiperiodicity
	2.2.3 Connections To SSMs and Fourier Analysis

	2.3 Manifold And Metric Learning
	2.3.1 The Graph Laplacian
	2.3.2 Laplacian Eigenmaps / Generalized Fourier Modes
	2.3.3 Reordering Signals with Laplacian of Sliding Windows
	2.3.4 Diffusion Maps
	2.3.5 Similarity Network Fusion

	2.4 Sequence Alignment
	2.4.1 Levenshtein Distance And Variants
	2.4.2 Smith Waterman Sub-Sequence Alignment
	2.4.3 Dynamic Time Warping
	2.4.4 Fréchet Distance

	2.5 Music Signal Processing
	2.5.1 Timbral Features
	2.5.2 Mel-Frequency Cepstral Coefficients (MFCCs)
	2.5.3 Automatic Beat Tracking
	2.5.4 Chroma Features
	2.5.5 Audio Fingerprinting
	2.5.6 Loop Ditty

	3 Cover Song Identification Fusing MFCC Shape Sequences And Chroma
	3.1 Automatic Cover Song Identification
	3.1.1 Our Contributions
	3.1.2 Prior Work

	3.2 MFCC-Based Time-Ordered Point Clouds from Blocks of Audio
	3.2.1 Beat-Synchronous Block/Windowing
	3.2.2 Euclidean Self-Similarity Matrices
	3.2.3 Global Comparison of Two Songs

	3.3 Feature Fusion Incorporating Pitch
	3.3.1 Blocked HPCP Features
	3.3.2 Late Similarity Network Fusion
	3.3.3 Early OR Fusion
	3.3.4 Early Similarity Network Fusion
	3.3.5 Early Fusion Examples

	3.4 Results
	3.4.1 Covers 80 Dataset
	3.4.2 ``Blurred Lines'' Music Copyright Controversy

	3.5 Other Geometric Features
	3.5.1 Space Curve Curvature/Torsion Scale Space
	3.5.2 Velocity And Curvature Results

	3.6 Conclusions And Future Work

	4 Sliding Windows of Periodic Videos
	4.1 Basic Scheme
	4.1.1 Sliding Window Videos
	4.1.2 Geometry of Sliding Window Videos

	4.2 Prior Work in Periodic Videos
	4.2.1 1D Surrogate Signals
	4.2.2 Self-Similarity Matrices
	4.2.3 Miscellaneous Techniques for Periodic Video Quantification
	4.2.4 Our Work

	4.3 Theoretical Analysis of Eulerian Periodic Videos
	4.3.1 Basic Model with Mirror Symmetry
	4.3.2 The High Dimensional Geometry of Repeated Pulses
	4.3.3 The Möbius Strip Geometry of Harmonic Repeated Pulses

	4.4 Practical Issues in Sliding Window Videos
	4.4.1 Reducing Memory Requirements with SVD
	4.4.2 Delay Independent Memory And Computation with Diagonal Convolution
	4.4.3 Normalization And Scoring
	4.4.4 Window Size
	4.4.5 Fundamental Frequency Estimation

	4.5 Ranking Videos by Periodicity
	4.5.1 Automated Techniques for Ranking
	4.5.2 Human Hodge Rank Aggregation
	4.5.3 Results

	4.6 Dynamics in Vocal Fold Videos
	4.6.1 Comparisons To Standard Techniques

	4.7 Conclusions / Future Work

	5 Isometry Blind Time Warping
	5.1 Introduction
	5.2 Prior Work on Time-Ordered Point Cloud Alignment / Re-Parameterization
	5.2.1 Procrustes Alignment / Iterative Closest Points
	5.2.2 Canonical Correlation Analysis

	5.3 Self-Similarity Images And Metric Alignment
	5.3.1 Induced 2D Warping Functions
	5.3.2 Gromov-Hausdorff Distance
	5.3.3 IBDTW Distance Definition
	5.3.4 First Last Distance
	5.3.5 A Greedy Algorithm Lower Bounding The IBDTW

	5.4 Critical Point Topological Time Warping
	5.4.1 SSM Critical Points Are Preserved under Time Warps
	5.4.2 The Geometry behind Critical Points in SSMs
	5.4.3 Quantifying with Persistence of Sublevelset Filtrations

	5.5 Synthetic Experiments
	5.6 Future Work

	A Curvature And Torsion of Space Curves
	A.0.1 Basic Definitions
	A.0.2 Generalizing Beyond Arc-Length Parameterizations

	Bibliography
	Alphabetical Index
	Biography

