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Abstract—This paper describes a general pipeline for generat-
ing optimal vector representations of topological features of data
for use with machine learning algorithms. This pipeline can be
viewed as a costly black-box function defined over a complex con-
figuration space, each point of which specifies both how features
are generated and how predictive models are trained on those
features. We propose using state-of-the-art Bayesian optimization
algorithms to inform the choice of topological vectorization
hyperparameters while simultaneously choosing learning model
parameters. We demonstrate the need for and effectiveness of
this pipeline using two difficult biological learning problems, and
illustrate the nontrivial interactions between topological feature
generation and learning model hyperparameters.

Index Terms—hyperparameter optimization, topological data
analysis, persistence diagrams, machine learning

I. INTRODUCTION

Topological data analysis (TDA) tools are increasingly
being combined with machine learning (ML) methods to both
improve the accuracies of predictive models and gain scientific
insights. Broadly speaking, TDA tools transform data into
quantified, interpretable characterizations of the data’s latent
geometric structure. In particular, persistent homology (PH)
transforms data into persistence diagrams (PDs), which are
quantified representations of topological structures, encoded
as collections of persistence pairs (PPs) in the plane.

To take advantage of the host of well-established learning
models for classification and regression problems, researchers
have proposed numerous methods to further transform PDs
into vector representations that are amenable to ML. For
example, one popular algorithm transforms a PD into a so-
called persistence image (PI) by first generating a surface over
the plane by convolving the PPs with a chosen kernel, and
then integrating the surface over each “pixel” defined by a
chosen gridding of the plane [1]. This particular embedding
of the diagram into a finite-dimensional vector space involves
several choices including the resolution of the image and
the bandwidth and scaling of the kernels. The authors of
[1] demonstrate empirically that eventual model performance
can be insensitive to the choice of these “vectorization”
parameters. However, the degree to which this is true is
problem-specific and may also depend on the choice of model
assessment.
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Even simple PD vectorization approaches involve choices.
For example, in [2], the authors studied the linear relationships
between brain arterial age and topological feature vectors
derived by first sorting PPs according to their persistence and
then encoding the PP coordinates between the kth to the jth
most persistent pairs into a length-2(j−k+1) vector, for many
choices of j and k. The authors observe that the accuracy of
the models depend in a surprising way on the choice of j
and k, which illustrates that medium-persistence topological
features are correlated with age, and thus provides insight into
the way arterial structures change over time.

It is well known, and well accepted in the machine-learning
community that the accuracy of a learning model’s predictions
may depend on choices of tunable hyperparameters (HPs).
For example, the hyperparameter minimum samples per leaf
(MSL) sets a lower bound on the number of samples required
to be in a leaf node of a decision tree and thereby ensures that a
the leaves do not contain too many points to be discriminating
nor too few to be generalizable.

The problem of finding such an optimum is made especially
difficult by the large number of tunable HPs in most modern
machine-learning methods, and the high computational cost of-
ten required to train these learners. Chief among the proposed
solutions to the problem of learning-model HP optimization is
Bayesian optimization—a framework developed to efficiently
optimize computationally expensive black-box functions de-
fined over complex parameter spaces.

II. HYPERPARAMETER OPTIMIZATION

A supervised learning algorithm endeavors to learn a rep-
resentation of a functional relationship between a set of input
variables (predictors/features) and output variables (targets)
from a finite collection of samples of the underlying input
and target spaces. Numerous methods exist for modelling such
an unknown relationship [3] and most of these models are
highly flexible, as they contain many parameters which are fit
to available data through some prescribed training procedure.
Indeed, it is often possible with such a model to construct a
perfect representation of the unknown function that has little
utility in practice due to overfitting. To avoid the problem
of overfitting, most supervised learning methods are equipped
with HPs controlling the maximum complexity of the model,



such as additional regularization parameters [4]. Moreover,
most ML methods require choices of the particular functional
forms that serve as the building blocks of the model’s repre-
sentation of the unknown function, e.g. the choice of kernel in
a nonlinear support vector machine [5]. Notably, in general,
the collection of model HPs defining the configuration space
(CS) of a ML algorithm may include combinations of discrete
and continuous variables as well as conditional dimensions
that depend on the choice of other HPs [6].

To each configuration of a learning model one can associate
a model performance metric—usually a measure of the accu-
racy of a trained model’s predictions on data not used to fit
the model. In this way, one defines a black-box function over
the configuration space, whose evaluation involves training
and testing the supervised learner. The practical problem is
to locate the best choice of HPs which minimize the error in
model predictions.

A. Bayesian Optimization

The most promising methods for optimizing a costly black
box function, f , are Bayesian optimization approaches [6]–
[8]. The advantages of these approaches in the context of HP
optimization is that they limit the number of evaluations of
f by introducing a prior surrogate function that approximates
f and that is designed to be much faster to evaluate than f .
In this way, an informed recommendation regarding which
configuration should be next evaluated using the costly func-
tion f can be made (via an acquisition function). This iterative
process then updates the prior surrogate function with this new
information to yield an improved (posterior) approximation
f . Furthermore, these methods are well suited to optimize
unknown functions over complex, even conditional CSs [9].

In this work, we apply and make extensive use of the Python
module Hyperoprt and take advantage of its implementation
of so-called choice nodes that encode a list as the values
of a discrete random variable [10]. These categorical spaces
allow us to express conditional parameters that depend on
other choices of parameters [11] which enables simultaneous
exploration of the performance of multiple PD vectorization
methods.

III. TOPOLOGICAL DATA ANALYSIS

A. Persistent Homology

Homology is a computational device that can be used to
count the numbers of components, holes, voids, and higher-
dimensional analogues of voids of a space (See [12] for
a full treatment). PH extends homology by capturing the
homological structure of a nested family of topological spaces,
parameterized by a real interval. Although homology and PH
may be defined more generally, we restrict the construction to
simplicial homology in service of the applications discussed
in Sections IV-B and IV-A.

1) Simplicial Complexes: A simplicial complex is a combi-
natorial representation of a topological space that may be re-
garded as a generalization of a graph that may contain higher-
dimensional analogues of vertices and edges, called simplices.

In particular, given a finite set of points {v1, . . . , vN}, a k-
simplex, σ = {vi0 , . . . , vik}, is subset of k + 1 vertices. In
the same way that vertices of a graph (now 0-simplices) are
singleton subsets, and edges (now 1-simplices) are subsets of
size two, higher dimensional simplices are defined as larger
subsets, e.g. 2-simplices (faces) are subsets of size three, 3-
simplices (tetrahedra) are subsets of size four, etc. A collection
of simplices S that satisfies
• if σ is a simplex in S, then S also contains all subsets

of σ, and
• the intersection of any two simplices in S is either empty

or is a simplex in S
is called a simplicial complex.

2) Simplicial Homology: The presence of three boundary
edges {a, b}, {a, c}, and {b, c} in S that are associated with
a 2-simplex, σ = {a, b, c} do not guarantee the existence of
σ in S. Simplicial homology aims to reveal such holes using
a formal algebraic construction. Say that within a simplicial
complex S, the number of k-simplices is nk. Then an nk-
dimensional vector space, Ck(S) over the field, F = Z/2Z,
may be defined to be the collection of all formal sums of the k-
simplices. For each k, there is a natural linear map ∂k : Ck →
Ck−1 which maps a k-simplex to its boundary, represented
as a linear combination of the boundary (k − 1)-simplices. A
linear combination of k-simplices which is in the image of
∂k+1 is the k-boundary of the collection of (k+1)-simplices,
while a k-cycle is a linear combination of k-simplices which
map to 0 under ∂k. Because ∂k ◦ ∂k+1 = 0, boundaries are
always cycles although there may be cycles which are not
boundaries. To identify all the cycles which are not boundaries,
one computes the k-th order homology group as the quotient
of vector spaces, Hk(S) := Zk(S)/Bk(S), which consists
of equivalence classes of k-cycles in which two k-cycles are
equivalent if they differ by a k-boundary.

3) Nested Complexes, Persistent Homology, & Diagrams:
A filtered family of simplicial complexes parameterized by an
interval is a collection of simplicial complexes Sr for r ∈ [s, t]
such that if x ≤ y then Sx ⊆ Sy . One imagines starting with
the complex, Ss, and adding to it simplices as r increases from
s to t. A simplex σ will be said to appear at r = y if σ ∈ Sy
and σ /∈ Sx for any x < y.

Let {Sr}r∈[s,t] be a filtered family of simplicial complexes.
The kth order PH groups of {Sr}r∈[s,t] are the vector space
quotients

Hx,y
k := Zk(Sx)/(Bk(Sy) ∩ Zk(Sx)),

for x ≤ y. For each s ≤ x ≤ y ≤ t, the dimension of Hx,y
k

counts the number of k-holes which first appeared in some
complex Sr ⊆ Sx and which are still present in Sy (See [13],
Chapter VII.1).

For each homological dimension k, the kth order PH groups
are faithfully represented by the kth order PD, consisting
of finitely many pairs (b, d) with b ≤ d that specify the
filtration parameters at which each k-hole appears/is born (b)
and disappears/dies (d).



4) Filtrations on Point Clouds: To capture the intrinsic
homological structure of a point cloud, it is common to
construct a filterered family of simplicial complexes whose
vertices are the points in the cloud. Numerous methods exist
for building these nested complexes [13]. In Section IV we
make use of the (weighted) α-complex, which we now define.

Associate to a point cloud V = {vi}ni=1 ⊂ Rd a set
of weights W = {wi ≥ 0}ni=1 and define the weighted
Voronoi cell of the point vi to be V (vi;wi) := {x ∈
Rd | dwi

(vi, x) ≤ dwj
(vj , x) for 1 ≤ j ≤ n}, where

dwi(vi, x) = ‖vi−x‖2−wi. For each scale parameter α ∈ R,
the nonempty closed ball Bα(xi;wi) of radius (α2 + wi)

1/2

centered on vi intersects the weighted Voronoi region to
create a convex region, Rα(vi;wi) := Bα(vi;wi)∩V (vi;wi),
containing vi. The weighted α-complex (at scale α) is then
defined to be the collection of subsets of V over which their
enclosing convex regions Rα have a nonempty intersection:

Aα(V ;W ) :=

{
σ ⊆ V |

⋂
vi∈σ

Rα(vi;wi) 6= ∅

}
.

Fig. 1 shows several geometric realizations of α-complexes
built on a planar point cloud.

Fig. 1. (Left) Three α-complexes at difference choices of scale parameter
α associated to a planar point cloud and (right) the corresponding PD of
the filtration over 0 ≤ α ≤ 1. Dashed lines connecting points in the cloud
indicate the edges in the Delaunay triangulation that have not yet been added
to the α-complex. Convex regions, Rα, around each point are drawn in blue.
PPs in the quadrant above the dashed line Death = α and to the left of Birth
= α correspond to homological features that exist at the scale α.

One benefit of α-complexes is that at large scales they are
likely to contain far fewer simplicies than other constructions,
since the α-complex is always a subcomplex of the Delaunay
triangulation [14] of a point cloud [13]. This can greatly
improve the efficiency of computing PH for large point clouds,
which is important in many ML settings where it is desirable
to have a huge volumne of data samples, or where real-time
computations are required.

B. PD Vectorization

PH may be regarded as a collection of transformations,
dgmk, k ≥ 0 (where k denotes the homological dimension),
each of which takes as input a point cloud and produces
a multiset of ordered pairs. Each pair in the kth order PD
captures the scales at which kth order homology features
appear and disappear. It is true that the PH features of a point
cloud, as represented in a PD, are discriminating in the sense
that the space of PDs, PD, can be endowed with a metric [15].
Thus two point clouds may be compared via the dissimilarity

of their PDs. However, the PD representation of homological
features as a multiset of ordered pairs is of limited utility
to modern ML methods that operate over vector spaces of
fixed dimension, since the number of points in a PD may
differ significantly between different point clouds, and PPs
are not intrinsically ordered. To overcome these limitation and
thereby expand the zoo of methods which may take advantage
of the structural features captured by PH, numerous methods
for ‘vectorizing’ PDs have been proposed [1], [16]–[25]. Each
of these methods are an additional transformation taking a PD
to a space endowed with additional structure, and many depend
on parameters which must be specified and fixed in order to
transform a collection of point clouds into a usable collection
of feature vectors that may be input to a learning model. For
completeness we define two previously-studied vectorization
methods that are used later in Sections IV-A and IV-B.

1) Ranges of Persistence Pairs: Given some data, X , let
D := dgmk(X ){(bi, di)}Ni=1 be a kth order PD. A simple way
to embed (some of) the content of D into Rd, for some fixed
d ≥ 1, is to first fix an ordering of pairs in D (e.g. decreasing
by persistence, di − bi) and then concatenate the coordinates
of the k birth-death pairs between the jth and the j + k− 1st
pair in the prescribed ordering; the result is a length-2k vector,
PAIRRANGE(D; j, k). Alternatively, one may record only the
persistence values, di−bi in the specified range of pairs, giving
PERRANGE(D; j, k). Despite it’s simplicity, a variant of the
latter method revealed in [2] the power of the 0th and 1st order
PH feature vectors derived from brain artery trees to explain
the age of a subject, for certain choices of j and k.

2) Persistence Images: First transform each PP (xi, yi) ∈
D to birth-persistence coordinates: (xi, yi) 7→ T (xi, yi) :=
(xi, yi − xi). To D associate the surface

ρ(D;σ, α) :=
∑

u∈T (D)

uαy gu(z;σ),

where gu is the 2D isotropic Gaussian gu(x, y;σ),with mean
u and variance σ2. The parameter α ≥ 1 controls how
significantly proximity to the persistence-axis impacts the
weight of the Gaussian associated to each PP.

Finally, by discretizing an appropriately chosen rectangular
subdomain [xmin, xmax]×[ymin, ymax] into mn square ‘pixels’
of side-length l, the PI of D is defined to be the vector in Rmn
gotten by integrating ρ(D;σ, α) over each pixel:

PERIMAGE(D;σ, α, l)p :=

∫∫
p

ρ(D;σ, α) dydx,

for p = [xmin+jl, xmin+(j+1)l]×[ymin+kl, ymin+(k+1)l]
for each 0 ≤ j ≤ m− 1 and 0 ≤ k ≤ n− 1.

Summarizing the pipeline defined thus far: data, X , is first
transformed into finitely many PDs, dgmk(X ), 0 ≤ k ≤ N , for
some choice of N well suited to the data and the problem at
hand. Each diagram is then mapped to a finite-dimensional fea-
ture vector VECk(dgmk(X ); θk), where VECk : PD → Rdk
is a parameterized map on the space of PDs, with parameters
θk. This vectorization is done in anticipation of training a
learning model on the resulting vectors. Thus, the topological



feature generation step introduces additional dimensions to the
CS.

IV. APPLICATIONS

We applied the TDA-ML hyperparameter optimization
pipeline to two biological datasets to explore its effectiveness
at simultaneously optimizing configurations that involve both
learning model and topological feature generation parameters
and to elucidate their interactions in the context of real ML
problems.

A. Predicting Synthetic Protein Stability

The authors of [26] aimed to elucidate principles of syn-
thetic protein design by using a software platform Rosetta to
design short amino acid (AA) sequences (41-43 AA) meant
to stably fold into one of four distinct secondary structure
topologies: ααα, αββα, βαββ, and ββαββ, with secondary
structures β and α separated by AA loops. We refer to these
proteins as the Rocklin designs. The Rosetta-predicted confor-
mations of atomic coordinates in the stable tertiary structure
of each design can be used to derive a large collection of
biophysical characteristics (e.g. hydrophobicity, total amount
of buried nonpolar surface area).

To validate their designs, the authors built and experimen-
tally tested the many thousands of synthetic small proteins
for resistance to cleaving by two protease enzymes. Stability
scores were then inferred for each protein and for each pro-
tease by further modelling the natural resistance of each design
to cleaving in its unfolded state. By modelling correlations
between the Rosetta-derived biophysical characteristics and
the experimental stability scores, the authors of [26] were
able to learn features associated with stability, and demonstrate
that even linear models trained on model-derived features have
some skill at predicting stabilities.

1) Topological Correlates with Protein Stability: The ex-
perimental stability scores reported in [26] do not directly
measure the strength of inter-atomic interactions, but may
reflect the propensity for a protein to remain in a folded con-
formation that increases resistance to cleaving. Since structural
properties of each protein’s atomic point cloud may capture
how ‘tightly packed’ a design’s stable conformation is, we
expect PH features may correlate with stability.

We compute H0, H1, and H2 PDs of the atomic arrange-
ment of each Rocklin design using weighted α-complex filtra-
tions, with weights determined by the van der Waals radius of
each atom, and find that, indeed, there are quantitative differ-
ences in the topological structures of the most and least stable
Rocklin designs. For instance, the least stable designs appear
to have fewer, but larger voids, as measured by persistence
(Fig. 2). Moreover, even very simple statistical properties of
the PDs are found to be correlated with biophysical features,
determined by Rosetta’s internal models, that are known to be
contributors to stability [26] (Fig. 2).

Using random forest classifiers (RFCs), we test the capacity
of different topological feature vectors to classify synthetic
proteins as stable (experimental stability score greater than 1)
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Fig. 2. (Top) The number of (left) and the sum of the persistence (right)
of H2 PPs as a function of the scale parameter α, averaged over the 100
most and least stable Rocklin designs. (Middle) The average of the H2 PIs
of the 100 most (left) and least (right) stable Rocklin designs generated by
PERIMAGE(D; 0.01, 2, 0.2) over the region [−1, 10] × [0, 5] in the birth-
persistence plane. (Bottom) binned scatter plots of hydrophobicity versus the
number of voids (right) and buried nonpolar surface area versus the sum of
persistence of all H1 pairs for ββαββ designs.

or unstable. To define a function to optimize over each CS, we
assess model performance using the mean area under the Re-
ceiver Operator Characteristic curve [27] (ROCAUC) over 5-
fold cross-validation achieved by the ensemble classifier. The
classifiers were trained and tested on the topological features
of 80/20%-splits of either all available Rocklin designs or on
only the subset of ββαββ proteins.

2) Bayesian optimization focuses search on promising PD
vectorization parameter regions: We first explore the extent
to which synthetic protein stability can be predicted using
simple H1 and H2 topological features that capture loop and
void structures in the atomic point clouds of Rosetta-modelled
stable conformations. We construct a joint HP space for the
PD vectorization methods PAIRRANGE and PERRANGE,
represented as a CS,

Configuration Space 1.
{

s t a r t p a i r (j) : U(0, 150, 1) ,
number o f p a i r s (k) : U(0, 150, 1) ,
persistence? : {True , F a l s e }

}
where U(0, 150, 1) is the uniform distribution over the integers
between 0 and 150 and persistence? determines if only the
persistence values, d−b, are concatenated in the feature vector
or if both coordinates of each PP, (b, d) are included. In every
case, the same configuration is used for both H1 and H2 pairs,
and the resulting feature vectors are concatenated.

During optimization, a total of 1000 configurations from CS
1 were evaluated. Among the first 20 configurations tested,



there are nearly equal numbers with persistence? set to True
as False, which reflects the uninformed prior on the choice of
vectorization methods. As the number of evaluations increases,
the better performance of vectorizations which include only
the persistence values biases the distribution so the opti-
mization routine spends more time exploring configurations
with persistence?=True. Nearly 90 percent (880/1000) of all
configuration proposals included persistence only values, and
the bias becomes clear after only 100 evaluations (Fig. 3). The
posterior distribution of persistence? reflects the fact that the
top ten percent of configurations with persistence? = False
achieve an average ROCAUC score of only 0.63, while the
top ten percent of configurations with persistence? = True
average 0.77.
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Fig. 3. Empirical distributions of persistence? parameter over Bayesian
optimization iterations numbers 0-20 (left), 80-100 (middle), and all 1000
configurations.

To test the efficiency of this framework at identifying
the global optimal configuration, we performed brute force
searches over the slices of the CS with persistence? = True,
and persistence? = False for every even j, k with 0 ≤ j < 150
and 2 ≤ k < 150− j. The global maximum ROCAUC score
was achieved using only persistence values for the PP range
28 to 86, with a ROCAUC score of approximately 0.7738.
During optimization the best observed PP range was found
to be 25 to 96, with a remarkably similar ROCAUC score of
0.7735. Interestingly, using both birth and death coordinates
yields a maximum of only 0.6718 across the range of tested
pairs. This drop in performance may be due to an increase
in the dimension of the feature space with less informative
features, and certainly explains the optimization’s bias towards
sampling from the subspace persistence? = True. A heatmap
of the start and end PP indices explored during optimization,
together with the best observed configuration and the absolute
optimal configuration parameters (shown in Fig. 4), shows
agreement between the HP region of highest ROCAUC scores
and the region sampled most frequently during optimization.

3) Optimal vectorization parameters may depend on the
homological dimension: Here we consider the impact of
simultaneously optimizing the learning model HPs, and the
PD vectorization HPs in which the ranges of PPs can vary
with homological dimension. Using RFCs we predict protein
stability across the entire Rocklin dataset by training on a fixed
subset of 80 percent of designs randomly selected from all four
secondary structure topologies, and testing on the remaining
20 percent of designs. The subspace of the CS controlling the
model HPs is chosen to be

j+
k

( 
  

 )

(  )j

Fig. 4. (Left) Mean 5-fold cross-validation ROCAUC score of a RFC trained
on the vectors PERRANGE( · ; j, k) derived from Rocklin ββαββ designs.
(Right) Empirical distribution of PP start and end indices, for pairs ordered by
persistence, over 1000 configurations evaluated during Bayesian optimization,
with the best performing configuration found during optimization (red x) and
the absolute maximum ROCAUC score found by grid search (black diamond).

Configuration Space 2.
{

min . samples p e r l e a f : U(0, 0.5) ,
min . s amples t o s p l i t : U(0, 0.5) ,
max . f e a t u r e s : U(0, 1)

}

and the vectorization configuration subspace includes two
copies of CS 1 with persistence? =True. See the scikit-learn
[28] RFC documentation for a complete description of the
available parameters.

Over 325 iterations of Bayesian optimization, we observe
a steady improvement in the average performance of the
TDA-ML pipeline (Fig. 5 right). Not surprisingly, a major
contributor to overall performance is the MSL. For medium
to large fractions of the total sample size (≈ 0.3 − 0.5),
performance can be no better than random (ROCAUC = 0.5)
due to underfitting.

The number of PPs used to generate each feature vector
and the maximum features become more narrowly distributed
around the optimum configuration, which yields a ROCAUC
of 0.73, towards the end of the optimization. As expected, the
histograms of individual HPs in the tail of the iterations of
the optimization routine contrasts the promising and the poor-
performing regions for each parameter. Fig. 5 illustrates the
dramatic difference in the numbers of H1 and H2 pairs that
yield the best model performance.

4) Learner parameters may influence optimal choices of
feature generation parameters: Bayesian optimization of PD
vectorization HPs is equally well suited to regression problems
as it is to classification problems. Fig. 6 shows the configura-
tions drawn during minimization of the average 5-fold cross-
validation root mean squared error (RMSE) between a random
forest regressor’s (RFR) predictions and the experimentally-
derived stability scores, over CS 3, for four different choices
of the MSL parameter. Model training and validation was
performed on the feature vectors PERIMAGE( · ;σ, 1, l) of
ββαββ designs, with σ and l measured in Angstroms.
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Fig. 5. (Left) ROCAUC scores for each of 325 configurations drawn
using Bayesian optimization. Iterations are colored according to the RFC
hyperparmaeter determining the minimum number of samples required to
define a leaf node in each decision tree (quantified as a fraction of the total
sample size), and are scaled by the parameter determining the maximum
number of features that are used when splitting each node in a tree during
training. (Right) Kernel density estimates of the marginal distributions of HPs
determining the number of H1 and H2 PP feature vectors, estimated from the
final (left) and best (right) 75 iterations of optimization. Vertical lines indicate
the best choices of each parameter found over all iterations.

Configuration Space 3.
{

p i x e l d i m e n s i o n s (l) : U(0.1, 1) ,
k e r n e l bandwid th (σ) : U(0, 0.5)

}

As MSL increases, the regions of CS 3 yielding the lowest
RMSE notably shift towards larger kernel bandwidths and
increased pixel dimensions (Fig. 6). This suggests a somewhat
counterintuitive relationship between a RFR learning model
parameter controlling over/under-fitting and the dimension and
fidelity of the PI representations of the PDs.

Over the range of tested MSL values, the empirical optimal
RMSE increases with MSL by close to 2%. On the other
hand, for a fixed MSL we see optimal performance over CS
3 improve by as much as 5% over the worst configurations
sampled. These observations highlight the importance of si-
multaneous optimization of both model and feature generation
HPs.

RMSEMSL=50MSL=5 MSL=100 MSL=200

Fig. 6. 200 configurations drawn during optimization iterations over CS 3
with MSL = 5 (top left), 50 (top right), 100 (bottom left), 200 (bottom right).
Samples are colored according to the mean RMSE over 5 training/testing
splits. Red x’s indicate the average HPs of the 20 best performing configura-
tions found during optimization.

B. Predicting Trabecular Number in Porous Bone Tissue

As our second application, we examine 3D point clouds
sampled from the human femur. The samples were obtained
using a micro-CT scanner concentrated on lighter, more flex-
ible regions known as “trabecular bone tissue” [29]. One
commonly accepted statistic used in morphometric analysis of
such shapes is the “trabecular number,” which is the inverse
of the average distance between branches of the medial axis

of the shape, reported in units of (1/mm). Due to the porous
nature of trabecular bone tissue, some authors have already
used topological techniques based on the Euler characteristic
at a fixed scale [29] to characterize them, and they have shown
a strong correlation between their statistics and trabecular
number. Here, we seek to complement their work by learning
a mapping from vectorized unweighted α filtrations to the
trabecular number.

In this experiment, we take a subset of the data reported
in [29] consisting of CT scans of the femoral heads of 6
subjects. The trabecular number varies from 0.57 (1/mm) to
1.13 (1/mm) across subjects. For each subject, we take three
disjoint rectangular regions, each of approximately 40mm3,
along the principal stress trajectories in the bone, and we
compute H1 and H2 PDs of unweighted α filtrations. Each
region consists of about 30k vertices, so using α filtrations
is crucial to cut down on the number of simplices involved
in H2 in particular. In the PIs, we restrict the birth times to
the range [0mm, 0.5mm] and the persistence range between
[0mm, 0.6mm].

Once we have the filtrations for each region, we learn a
linear map A from the regions to the trabecular numbers
of their associated subjects using leave-one-subject-out cross-
validation (training on 15 regions and testing on 3 regions
for each subject). Since there are far more parameters than
data samples in every model, we use Ridge regression as
a regularized linear regressor; that is, given a vectorized
persistence diagram w, a regularization parameter β, and
a trabecular number y, we minimize the objective function
||y −A · w||22 + β||A||22 over all samples in each training set.
We now detail some conclusions from our experiments that
shed light on the pipeline.

Persistence Pairs

Pixel Size (mm)

Fig. 7. 1000 configurations drawn during optimization iterations for the bone
trabecular number, fixing the kernel width at 0.05 for PIs (left column) and
fixing the number of pairs at 50 for persistence pairs (right column). The red
dot indicates the optimal configuration found.

1) The optimal vectorization method is problem specific:
We first perform an experiment in which we allow the op-
timization to choose between sorted persistence pairs and
persistence images, as well as to vary hyperparameters therein.
As Fig. 7 shows that sorted persistences reach about half of
the RMSE of the best performing persistence image. As a
result, the optimizer ends up sampling configurations much
more form the former (right column). A similar conditional
configuration space was tested in the protein application, and
the exact opposite was true: PIs significantly outperformed the
models trained on sorted PPs.
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Fig. 8. The result of sampling 200 configurations each for different allowed
ranges of the ridge regression regularization parameter β. In the figure above,
the ranges increase from left to right, and samples are plotted in the pixel
size / kernel bandwidth parameter space of persistence images, with colors
indicating RMSE of the corresponding configuration and a red dot drawn over
the optimal configuration in each range.

Fig. 9. The result of applying ridge regression fixing σ = 0.05 and changing
l from coarse 0.02mm to a finer 0.005mm resolution. The leftmost plot shows
the RMSE versus alpha for the coarse (blue solid) and fine (orange dotted)
l. The right three columns show the coefficients of A for both H1 and H2

in the top and bottom rows, respectively, for β1 and β2 in different cases.
Blue values indicate a negative contribution to the trabecular number, while
red regions indicate a positive contribution.

2) Kernel and pixel size can act as regularization params:
We also observe a notable interaction between the regulariza-
tion parameter β in ridge regression, the pixel dimension l
and kernel bandwidth σ parameters controlling the PIs. Fig. 8
shows that for a smaller β, a larger σ is needed to prevent
overfitting. Also, the pixel size can play a similar role for a
fixed σ. Fig. 9 shows the error curves varying β for a fixed
σ = 0.05, for two different choices of the pixel size l. For
a finer pixel size, the β yielding optimal performance, β2,
is larger than that for the coarser pixel size, β1, implying
more regularization is needed to deal with a larger number
of parameters. However, at this optimum, the coefficients in
ridge regression appear to be a nearly perfect “superresolution”
version of those at a coarser level, with a similar RMSE. By
contrast, using the same β = β1 leads to higher error for the
finer pixels, with coefficients which do not match.

3) Model performance may be mostly invariant over a
range of pixel dimensions: Fig. 7 (left) reveals the insensitivity
of model prediction error over a large range of PI pixel
parameters for a narrow range of the regularization parameter
β. We speculate that the reason is that for a fixed (relatively
small) kernel bandwidth σ, the values values of the subsets of
pixels containing the PPs changes very little, even though the
dimension of the resulting feature may change significantly.

As l decreases, β does appear to trend upward, to compensate
for the increased dimension.

V. DISCUSSION

This paper describes a general framework for simultane-
ously choosing optimal learning-model and topological feature
vector HPs. We propose using state-of-the-art Bayesian opti-
mization to efficiently search complex, conditional CSs when
computing topological features for use with machine-learning
applications.

A detailed exploration of the zoo of PD vectorization
methods presently in use is beyond the scope of this work,
although many would benefit from the proposed framework. A
modular and extensible implementation of this pipeline would
enable researchers to systematically compare PD vectorization
approaches and eliminate much of the guess work presently
needed when choosing representations of PDs.

As shown in Section IV-A, loop and void structures of
model-predicted stable conformations are moderately success-
ful at predicting the stability of small synthetic proteins,
although this may be largely due to strong correlations with
known biophysical determinants of stability. An in-depth
analysis comparing and combining biophysical characteristics
with topological features is needed to fully understand the
importance of homological metrics to protein stability. In this
context, it may be highly informative to extract representative
subsets of atoms in the equivalence classes of H1 and H2

PPs and identify their locations within primary, secondary, and
tertiary structures.

In Section IV-B, we find that homological features are
well correlated with the trabecular number of porous bone
tissue, and that linear models relating H1 and H2 features to
trabecular number are somewhat generalizable across patients,
although the strength of these conclusions would improve with
the availability of more data. A more interesting, and difficult
problem is to predict other diagnostic measurables such as
bone strength, but this is the subject of future work.

One limitation of the proposed framework is that it requires
a parameterized configuration space which may be limiting
in certain contexts. For example, it is common to choose a
parameterized family of weight functions for the PD-to-PI
transformation that depends on persistence alone. However,
there may be some regions of the PD plane which are more
or less discriminating than others, due to similar densities
of PPs in those regions across all samples as suggested by
Fig. 2 (middle). Parameterizing a family of functions that can
reasonably identify and appropriately weight different regions
of the plane may be cumbersome, and would not necessarily
address the issues of high dimensionality, sparse information
content, and spatial correlations in the PI. For these reasons, it
is desirable to have a method that could automatically identify
the most discriminating regions of the birth-persistence plane
given a collection of labelled PDs.
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