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Abstract—In this work, we address fusion of heterogeneous sen-
sor data using wavelet-based summaries of fused self-similarity
information from each sensor. The technique we develop is quite
general, does not require domain specific knowledge or physical
models, and requires no training. Nonetheless, it can perform
surprisingly well at the general task of differentiating classes
of time-ordered behavior sequences which are sensed by more
than one modality. As a demonstration of our capabilities in the
audio to video context, we focus on the differentiation of speech
sequences.

Data from two or more modalities first are represented using
self-similarity matrices(SSMs) corresponding to time-ordered
point clouds in feature spaces of each of these data sources; we
note that these feature spaces can be of entirely different scale
and dimensionality.

A fused similarity template is then derived from the modality-
specific SSMs using a technique called similarity network fu-
sion (SNF). We investigate pipelines using SNF as both an
upstream (feature-level) and a downstream (ranking-level) fu-
sion technique. Multiscale geometric features of this template
are then extracted using a recently-developed technique called
the scattering transform, and these features are then used to
differentiate speech sequences. This method outperforms unsu-
pervised techniques which operate directly on the raw data, and
it also outperforms stovepiped methods which operate on SSMs
separately derived from the distinct modalities. The benefits of
this method become even more apparent as the simulated peak
signal to noise ratio decreases.
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1. INTRODUCTION
This paper suggests a very general and entirely unsupervised
heterogeneous sensor fusion pipeline that consists of three
geometry-based techniques. We demonstrate this pipeline on
a well-studied digit recognition problem (Section 2) in audio-
visual fusion, but we claim that this will be broadly useful in
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any fusion problem where each sensor produces a time series
of arbitrary dimension.

Time series from each sensor are summarized using a two-
dimensional construct called a self-similarity matrix (SSM,
Section 4). A time series f(t1), . . . , f(tn) of arbitrary dimen-
sion produces an SSM whose (i, j) entry encodes the similar-
ity between f(ti) and f(tj). The two time series considered
in this work (Section 3) correspond to lip pixel frames which
are resized to 25x25 pixels from the video sensor (treated as a
625 dimensional Euclidean space) and a sequence of MFCC
coefficients [4] of dimension 20 from the audio sensor, but we
emphasize that the techniques are general enough to handle
time series of any form from any sensor modalities. This
two-dimensional representation of time series from disparate
sensor streams enables useful comparisons, facilitating many
applications of SSMs, including to cover song retrieval via
MFCC features [22], cross-modal comparison [20] and action
recognition [10].

Upstream fusion of SSMs arising from two or more modal-
ities can then be performed (Section 5) using similarity
network fusion (SNF, [25], [26]), a random-walk-based tech-
nique which is designed to create an SSM which combines
the strengths of the individual matrices. SNF has been
applied to different pre-processed modalities arising from
musical audio [21] and to improving object level comparisons
between 2D shapes[25], cancer phenotypes [26], [8], and
image collections [8], but to our knowledge, this is the first
paper that does so across audio and video modalities for
individual objects. It is also possible (Section 7) to apply
SNF to SSMs defined on the object level rather than at the
feature level, leading to a downstream fusion technique.

Summary features are then extracted from the fused SSM
using the scattering transform (Section 6). This wavelet-
based technique ([13], [5]) uses the architecture of a convolu-
tion neural network, but without any supervision, to extract
a hierarchy of geometric features from images (including
fused and/or non-fused SSMs) in a manner that is provably
robust to deformations and preserves multi-scale frequency
information. The scattering transform has been applied in
several venues, for example to texture discrimination [17].

We advocate combining these techniques into an extremely
general pipeline (Figure 2) that is entirely unsupervised (i.e,
no training data required), does not require domain-specific
models, and can handle pre-processed input of any form. The
benefits of this pipeline are demonstrated via several experi-
ments with increasing levels of simulated noise (Section 8),
and we also explore different combinations of the techniques
(e.g, using the scattering transform directly on the modality-
specific SSMs rather than fusing).

There have been countless papers ([2] is a good survey) advo-
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Figure 1. Even after uniformly scaling sequences from two
speakers, the raw audio signals do not align perfectly.

cating different approaches to audio-visual fusion, and some
which tackle the specific problem of digit recognition. The
vast majority of these techniques are supervised, requiring
labeled examples in order to build a model. For instance,
in a widely-used and excellent method [16] which combines
Canonical Correlation Analysis (CCA) with Hidden Markov
Models (HMMs), the CCA subspace in which the modalities
are most correlated needs to be learned on a training set
before applying the method to new examples, and a different
HMM must also be trained on each class. Many of the
most recent and very successful methods [9] are based on
deep learning and thus require very large numbers of labeled
examples. Our proposed approach, by contrast, is completely
unsupervised; that is, we rely on labeled examples only to
evaluate our models, rather than using them in training to
generate the features used by our models.
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2. RECOGNITION PROBLEM
We demonstrate our methods via a recently-released but
already well-studied audiovisual database [1], which has
speakers making utterances while recorded simultaneously
by several cameras and by audio. We focus on the “Digits”
portion of the database, which contains 51 distinct speakers
uttering digit strings of length ten (e.g, 1735162667). There
are ten distinct strings, with each one uttered three distinct
times by each speaker; hence there are 51 ·3 = 153 examples
of each string.

This dataset is particularly interesting because the two modal-
ities capture different aspects of speech (e.g, ’p’ sounds
cannot be distinguished from ’b’ sounds by video). There
are also no obvious correlations between the two modal-
ities, unlike that between, say, nadir-measured speed and
horizontally-measured doppler as in some of our earlier work
[20]. Furthermore, there is quite a bit of variation for a single
digit string when uttered by different speakers (see Figure 1),
and indeed sometimes even by the same speaker.

Evaluation Methods

Here we rigorously define our problem, as well as the metrics
used to evaluate success of the different proposed pipelines.
Let D be the collection of all utterances of all 10-digit strings,
decomposed as the disjoint union of sets Di, each of which
contains the 153 distinct utterances of the ith string, for a
total of 1530 strings in the entire database. Given any notion
of distance µ on D and a specific string s, the strings in D can
be ranked in increasing order of distance from s. The goal is
to create a µ where, for each such s, if s ∈ Di, then the other
strings in Di will be ranked higher than the strings not in Di.
Success in achieving this goal for a specific s is measured by
a precision recall curve. More precisely, s is pulled out of the
database, and the remaining 1529 strings are put in ranked
order by µ. The ranks of the remaining 152 digits in the digit
class of s are used to construct the precision recall curve as
follows; there are 152 points in the graph, with “recall” ri
on the x-axis equal to r1 = 1/152, r2 = 2/152, ..., r152 =
1.0, and the corresponding “precision” values pi on the y-
axis equal to the proportion of items in the correct class to all
items we’ve gone through by the time we reach the ith correct
item. For instance, if the tenth item occurs at rank 100 in the
list, then the recall r10 = 10/152, and the precision is p10 =
10/100 = 0.1. The area under the precision-recall curve is
referred to as the mean average precision (MAP). A MAP
of 1.0 is considered perfect performance, while MAP values
closer to zero indicate bad performance. To report a summary
statistic for all of µ, we average precision recall curves for
all strings in the database D, and compute the corresponding
MAP.

Figure 10 displays precision-recall curves and MAPs for the
different ranking mechanisms explored in this paper (which
we will explain in subsequent sections), and Figure 11 ex-
plores the impact of noise, which we will explain more in
Section 8. We also compute precision recall curves and
MAPs for two other ways of partitioning the data into distinct
classes. First, we decompose D into 51 different classes
of size 30, where each class contains all sequences uttered
by a particular speaker (i.e. each PR curve has 29 points).
Figure 12 shows MAPs for this case over different noise
levels. Finally, we explore a finer grained sorting into the
intersection of speaker and digit class, for a total of 510
different classes of size 3 (i.e. each PR curve has 3 points),
and figure 13 shows MAPs for this case.

3. DATA PREPROCESSING
We are now ready to explain our pipeline for comparing the
10 digit strings in more detail. First, we apply some simple
preprocessing to the raw audio and video for each string,
which is very similar to preprocessing done by the authors
of [16]. For the video, we use pre-extracted lip regions for
each speaker that are all resized uniformly to 25x25 grayscale
pixels, so that size variations in the lips between subjects due
to anatomy and camera position are factored out. Unlike
[16], who perform a zigzagged/shrunken Discrete Cosine
Transform (as in the JPEG standard) to further clean this up,
we simply use the raw pixels. Each frame in the video then
amounts to one sample in a time series which takes values
in 625 Euclidean dimensions. For the audio, we resample
it to 22050hz and compute 20 MFCC coefficients [4], using
a window size of 4096 and a hop size of 256. MFCC
coefficients can be viewed as a lossy coarse description of the
spectrum in a small window of audio. As the windows jump
by an interval equal to the hop size, this then traces out a time
series taking values in a 20 dimensional Euclidean space.
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Figure 2. The pipeline for our upstream fusion and data summaries (Sections 3 through 6). Note that the only input
parameter is the nearest neighbors K. So this is a nearly non-parametric, unsupervised model. This pipeline can also be easily

generalized to handle any number of input features of any type.

Figure 3. Three examples of self-similarity matrices
(SSMs) built on three TOPCs: A 1D cosine, a 2D ribbon,
and a 3D knot. Time is on the horizontal axis in the left

panel, and is indicated by color in the other two panels. This
was Figure 1 in [20].

4. SELF-SIMILARITY MATRICES
This section provides basic background on Self-similarity
Matrices (SSMs), which we advocate as a very useful and
general tool for understanding the time evolution of a process
in an arbitrary feature space. An earlier paper [20] of the
authors used SSMs in the heterogeneous sensor framework,
and much of this section is adapted from that paper as well as
from the dissertation [23] of the first author.

Suppose that γ : [a, b] → (M, ρ) is a space curve defining
a trajectory in some metric space. Such a curve gives rise
to a self-similarity image (SSI) Dγ : [a, b] × [a, b] → R via
Dγ(x, y) = ρ(γ(x), γ(y)) for all pairs of time points x, y.
If we discretize the time domain a = t1 < t2 < . . . <
tN = b, then we have a time series or time-ordered point
cloud (TOPC) X1, . . . , XN ∈ M , where Xi = γ(ti). Then
the SSI becomes an N × N self-similarity matrix SSM with
Dij = ρ(Xi, Xj). Three notional examples of SSMs appear
in Figure 3.

In this paper, we transform each 10-digit string s into SSMs
DV (s) and DA(s) by employing the preprocessing described
in Section 3 and using standard Euclidean distance in R625

and R20, respectively. Note that the entries in an SSM can
go from zero to infinity, where small entries indicate close
proximity. To facilitate the probability-based methods in
Section 5, we transform each SSM as follows. Given any
TOPC point cloud X1, . . . , XN and any metric ρ we define a

similarity kernel W as

Wij = exp

�
−ρ2(xi, xj)

σij

�
(1)

This is a similarity measure rather than a distance, as points
which are far have a score close to 0, and points which are
close have a score closer to 1. Often, σij is set to a constant,
but a smarter choice is to autotune it based on the average
distance to the nearest neighbors of xi and xj . In particular,
we can follow [26] and set:

σκ
ij =

β

3
(

1

κN
(

�

k∈Nκ(i)

ρ(xi, xk))

+(
1

κN

�

k∈Nκ(j)

ρ(xj , xk)) + ρ(xi, xj)),

where κ is the proportion of nearest neighbors taken (we
use κ = 0.1 in this work), Nκ(i) refers to the κN nearest
neighbors of xi, and β is a parameter that can be tweaked
(usually in the range [0.3, 0.8]). Of course, kernels other
than the Gaussian are possible, but we find this works well
in practice for our applications.

Applying this procedure to DA(s) and DV (s) results in new
SSMS, WA(s) and WV (s). Examples of each type appear
in the first two columns of Figure 4. One can of course also
compute an SSM directly from the raw audio data, treated
as a simple one-dimensional time series. Figure 5 compares
such an SSM on the right with the MFCC-aided SSM (left),
and indicates that the latter picks up on more meaningful
structure.

5. UPSTREAM SIMILARITY NETWORK
FUSION

Sections 3 and 4 describe how to transform a digit string into
two SSMs, with WA derived from audio and WV derived
from video. In general, one is often faced with the situation
where one has two or more similarity measures defined on the
same finite ordered set. The technique of similarity network
fusion (SNF, [25], [26]) takes the SSMs of these similarity
measures and outputs a single fused SSM which is meant to
leverage the strengths of each individual SSM.

A notional example appears in Figure 6. We imagine that
we have a TOPC consisting of three distinct clusters with
100 points each, and we noisily sample these clusters three
separate times. Each time we do so, the �2 distance in the
plane gives a similarity measure. The SSMs corresponding to
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Figure 4. SSMs for the digit sequence “9 7 4 4 4 3 5 5 8 7”
spoken by two different speakers. The SSMs for different

speakers are on each row, the first column shows SSMs for
audio, the second column shows SSMs for video, and the
third column shows the fused SSMs. Bright means similar

and dark means dissimilar. The repetitions of the two 4s are
circled in region a in the bottom speaker, the repetitions of
the 5 digit is circled in region b, and the repetition of the

digit ”7” is circled in region c. These structures are visible in
both speakers.

Figure 5. SSMs for audio on the digit sequence “9 7 4 4 4 3
5 5 8 7” as summarized by MFCC and as summarized by

raw samples. Structure, such as the repeating 4s, 5s, and 7s,
as in Figure 4), is not visible in the raw samples.

these three distinct similarity measures appear in the top row
of the figure. While each measure is likely to see a pair of
points belonging to a single cluster as more similar to each
other (the yellow speckles along the diagonal) than a pair
of points from distinct clusters, this is certainly not always
the case (the many blue gaps among the yellow speckles).
A similar critique holds for the simple average of the three
SSMs. On the other hand, solid cluster membership is much
more apparent in the SSM produced by the SNF algorithm.
The third column of Figure 4 shows fused SSMs resulting
from audio and video SSMs in the digits dataset.

We now give some technical details of SNF, referring the
reader to [25], [26] for a fuller description. Given M
different N × N similarity matrices W1,W2, ...,WM (as in
Equation 1), we normalize them into corresponding matrices
P1, P2, ..., PM as follows

Figure 6. A notional example of similarity network fusion
from three different (top row) noisy measurements of 3

simulated clusters. Simple averaging (bottom row, left) of
the similarities is far inferior to similarity network fusion

(bottom row, middle).

Pm(i, j) =

�
Wm(i,j)

2
�

k �=i Wm(i,k) j �= i

1/2 j = i

�
(2)

Since each row now sums to 1, each Pm can be thought of
as a transition probability matrix on a graph with N vertices.
In addition to the P matrices, we also define an associated
“masked” transition probability matrix Sm as follows

Sm(i, j) =

�
Wm(i,j)

2
�

k∈Ni
Wm(i,k) j ∈ Ni

0 otherwise

�
(3)

where Ni is the κN nearest neighbors of point i (those js
with the κN largest similarity values in the ith row of Wm,
excluding i). This is similar to P , except that the probabilities
outside of the nearest neighborhoods are set to zero, and the
remaining entries are reweighted to sum to 1. Given these
sets of matrices, SNF updates the P matrices in an iterative
fashion, while holding the S matrices fixed. Referring to P t

m

as the P matrix for the mth feature after t iterations, where
P 0
m = Pm, the recursive update rule can be written as the

following matrix multiplication

P t
m = Sm ×

��
k �=m P t−1

k

M − 1

�
× (Sm)† (4)

Intuitively, this can be thought of as one step of a random
walk through neighborhoods determined by Wm using tran-
sition probabilities from all of the other W s. At the end of
some specified number of iterations T (we use T = 20), the
final similarity matrix can be obtained as

1

M

M�

m=1

PT
m (5)
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Figure 7. An example of raw L2 versus the scattering
transform on an image of two blobs. The initial blobs are

drawn in green and an example of displaced blobs are drawn
in red. The cyan arrow shows the positive direction of

displacement.

Note that for our pipeline so far, we only have M = 2 (WA
for audio and WV for video), though in Section 7, we will
show a case where M = 3.

Due to the matrix multiplication in Equation 4, the time com-
plexity of this algorithm is O(N3) for an N × N similarity
matrix, though this can be mitigated with a sparse matrix
for S. Regardless, this is not a computational bottleneck
for the short sequences under consideration in this specific
application.

Uniformly Rescaling SSMs

Note that SNF requires all of the W matrices to be the same
size and in correspondence; that is, in the case of audio/video
SSM fusion for a particular digit sequence by a particular
speaker, the ith row of WA needs to correspond to the same
point in time as the ith row of WV . Hence, we simply
resize WA and WV to a common dimension (256×256) with
image interpolation. Furthermore, a common dimension for
all SSMs allows us to compare across digit sequences which
have different lengths in time, which is important since even
the same speaker is unlikely to say the same sequence in
exactly the same amount of time during different runs.

6. SCATTERING TRANSFORM
Once WA and WV have been resized to the same dimension,
it is possible to compare instances of each to each other with
an L2 norm, otherwise known as a matrix Frobenius norm.
That is, the distance between two N × N matrices A and B
could be defined as

||A−B||2 =

����
N�

i=1

N�

j=1

(Aij −Bij)2 (6)

For sequences which unfold at the same rate up to a uniform
scale, this is a good distance to use. However, in practice,
it is unlikely that two runs of the same digit sequence will
line up exactly, even after a uniform rescaling. Instead, there
are often local delays, or “time warps,” that will cause them
to be out of sync, and which will induce local perturbations
in the SSMs2. Unfortunately, when small, high frequency
details, such as those in SSMs (Figure 4), are perturbed

2The authors of [19] have made a similar observation for time series in
dynamical systems and have used the 1D scattering transform to ameliorate
this

slightly spatially, the L2 norm can be unstable. Figure 7
shows a synthetic example of this phenomenon. In general,
one can show this instability mathematically by applying the
2D Fourier transform to the matrix, which is an isometry, and
noticing that high frequency bins change dramatically for any
small change in spatial position [6].

Since this instability only occurs at fine scales, one could
instead try applying an orthogonal 2D wavelet transform
[14] to the SSMs, which, unlike the Fourier Transform, is
spatially localized in a hierarchical fashion. However, the
wavelet transform is also an isometry, so the same instabil-
ities are still present; this amounts to “bin hopping” of the
wavelet coefficients at the fine scales, which is a problem that
also plagues histograms compared with Euclidean distance.
Motivated by this problem, Mallat [13] devised a nonlinear
alternative to the wavelet transform known as the scattering
transform, which is still hierarchical, but which is stable. Like
a wavelet transform, a particular scattering transform starts
with a mother wavelet ψ(u, v) and its corresponding scaling
function, or lowpass filter φ(u, v). However, the scattering
transform insists that ψ(u, v) be complex-valued, and in the
case of 2D images, it is directional, so we index it with a
direction vector ψγ(u, v), where γ = (γx, γy), γ

2
x + γ2

y = 1.
Finally, the mother wavelet can be scaled in a dyadic fashion,
so that

ψγ,s(u, v) = 2−2sψγ(u/2
s, v/2s) (7)

Then, given an 2D image I(u, v), the level 0 scattering
coefficients S0(u, v) are simply a lowpass filter

S0(u, v) = I ∗ φ(u, v) (8)

The level 1 scattering coefficients, on the other hand, are
computed for each of L directions and each of J scales as
follows

S1
i,j(u, v) = |I ∗ ψγi,j(u, v)| ∗ φ(u, v) (9)

for i = 1, 2, . . . L and j = 0, 1, . . . J − 1, where |.| is the
complex modulus (absolute value), and the convolution with
the scaling function φ is followed by downsampling at scale
J .

Then, the level 2 scattering coefficients are computed for a
pair of wavelets ψγi,j and ψγk,� as follows

S2
i,j,k,�(u, v) = ||I ∗ψγi,j(u, v)|∗ψγk,�(u, v)|∗φ(u, v) (10)

for i = 1, 2, . . . L, j = 0, 1, . . . , J − 1, k = 1, 2, . . . L,
and � = 0, 1, . . . j − 1. In other words, the level 2 scat-
tering coefficients compute interactions between all pairs of
wavelets at different directions and different scales, which
allows them to pick up on higher order information not
possible with an ordinary Fourier or wavelet transform. For
instance, the scattering coefficient can represent corners as
the interaction of two wavelets at different directions, while
wavelets and Fourier modes can only represent a gradient
along a single direction. Note that for second order scattering,
the scale of the first wavelet i is greater than the scale of
the second wavelet �, since it has been shown that only
these combinations yield a non-negligible result [24]. Said
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differently, the first wavelet should be at a lower frequency
than the second. Hence, there are L2J(J − 1)/2 different
combinations of wavelet pair interactions for level 2.

To continue to even higher order scattering coefficients at
level q, one continues this pattern of convolving with a se-
quence of wavelets of decreasing scales, always followed by
a complex modulus (the nonlinear element), and finished with
a lowpass filter, for a total of Lq

�
J
q

�
wavelet sequences, each

also referred to as a “scattering path.” Hence, the architecture
of the scattering transform is similar to the architecture of a
deep convolutional neural network [11], [12], although the
weights are not learned but instead fixed based on the mother
wavelet. This crucial difference accounts for the stability
of the scattering transform versus the empirical instability
of deep neural networks that exposes them to adversarial
attack in certain contexts [18], [15]. It also circumvents the
need to learn weights from examples, keeping our pipeline
unsupervised. For a more complete description of the 2D
scattering transform in the context of texture classification,
please refer to [7].

In our case, we use complex Morlet (Gabor) wavelets, since
they have nearly optimal frequency localization [14]. They
take the form of a complex plane wave attenuated by a
Gaussian

ψγ(u, v) = eiγ·(u,v)e−(u2+v2)/σ2

(11)

with corresponding scaling functions which are the Gaussians
φ(u, v) = exp(−(u2 + v2)/σ2). We resize our images to a
256×256 resolution (65536 pixels), and we take J = 4 scales
and L = 8 directions equally spaced between 0 and π (since
the interval [π, 2π) is redundant in directions with [0,π)).
We then perform two levels of scattering and downsample
each scattering path to a 32 × 32 resolution after lowpass
filtering. This leaves us with k = 322(1 + 4 × 8 + (4 ×
3/2) × 82) = 427008 scattering coefficients (a roughly 6.5x
increase in data size, but at a gain of stability). The scattering
distance can then be taken as the Euclidean distance in this k-
dimensional Euclidean space, and this is provably stable [13].
As an example, Figure 7 shows distances of the scattering
transform versus straight L2 distances between images of
blobs as the blobs are displaced along a line. Note that
the L2 and scattering distance are both near zero for very
small displacements, but the L2 distance maxes out once the
blobs no longer overlap at an absolute displacement of 0.1,
the radius of the blob. By contrast, the scattering transform
distance continues to be sensitive to changes even beyond the
support of the blob, hence demonstrating its stability to small
deformations.

In our pipeline, we use the scattering transform exclusively
on self-similarity images. Figure 9 shows an example of
the scattering transform for the fused SSM for subject 45
sequence 22 (bottom right of Figure 4). Finally, note that,
like the 2D wavelet transform, the scattering transform on our
N × N images has time complexity O(N2 log(N)). Since
N is small for this application, this is not a computational
bottleneck for the scattering transform on individual SSMs.

Figure 8. An example of the zeroth, first, and second order
scattering coefficients for the blob image and the shifted

blob image in Figure 7. Although they do not overlap in the
original images, some of their first and second order

scattering coefficients do overlap slightly (the perturbation
has been “smoothed out”), leading to a non-saturated

distance.

Figure 9. An example of the zeroth, first, and second order
scattering coefficients for the fused SSM for subject 45

sequence 22 (bottom right of Figure 4).

7. DOWNSTREAM SIMILARITY NETWORK
FUSION

So far, all of the steps we have described can be performed
upstream: that is, before any ranking decisions have been
made. Figure 2 shows the flow from step to step. However,
if we have access to N examples of digit sequences already
and we perform all pairwise comparisons between them, we
can perform one additional, optional step to improve classifi-
cation, even without using any labels on these sequences. Let
µ1, µ2 and µ3 be three different N × N matrices measuring
all of the pairwise similarities between digits, as measured by
some path in our upstream pipeline. For instance we can use
L2 on WA (µ1), WV (µ2), WF (µ3), or we can use L2 on
their scattering counterparts WS

A (µ1), WS
V (µ2), or WS

F (µ3).
Note that µ1, µ2, µ3 are themselves SSMs, but at the object
level. Because they are SSMs, we can apply SNF to them
to potentially improve the ensuing rankings. We refer to this
as downstream similarity network fusion, as it happens at the
object level after all upstream features have been computed,
and we do indeed see that it improves results in some cases in
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Figure 10. Precision-Recall curves for each pipeline under
zero noise. Mean Average Precision (MAP) shown in

parentheses.

Section 8. Note that this also works with only two different
similarity measures, though we see advantages to using all
three at our disposal within L2 or scattering.

8. EXPERIMENTS AND RESULTS
This section puts the geometric tools described in Section 4-7
together into several different pipelines, and then evaluates
these pipelines on the dataset described in Section 2. As
stated above, each pipeline creates a metric µ on the set of
digit strings D, and here they do so by transforming each
string into a feature vector in a suitable Euclidean space
(either raw SSM entries or scattering coefficients on SSMs)
and then using the standard �2 metric between pairs of feature
vectors in that space.

The method we advocate (Figure 2) starts by extracting one
audio and one video time series from each string as described
in Section 3. These time series are transformed (Section 4)
into similarity matrices WA(s) and WV (s), which are then
fused (Section 5) to produce a single SSM WF (s). Finally,
the scattering transform (Section 6) is applied to WF (s) to
produce a sequence of scattering coefficients which form
the needed feature vector. This method is referred to as
FusedScatter in the test results below.

We also explore several other pipelines. FusedL2 stops at
the third block in Figure 2, stacking the entries of the matrix
WF (s) to form the feature vector. Similarity, AudioL2 (resp.,
VideoL2) outputs WA(s) (resp., WV (s)) as the feature vector.
AudioScatter (resp., VideoScatter) uses only the audio (resp.,
video) time series, transforms it into WA(s) (resp., WV (s)),
and then directly extracts scattering coefficients without any
similarity network fusion. Finally, we can perform late fusion
(Section 7) to AudioL2 and VideoL2, or AudioL2, VideoL2,
and FusedL2, and similarly for AudioScatter and VideoScat-
ter and AudioScatter, VideoScatter, and FusedScatter. We
call these AVLateFusedL2, AllFusedL2, AVLateFusedScat-
ter, and AllFusedScatter, respectively.

Precision-recall curves for each pipeline are shown in Figure
10. The benefits of using the scattering transform rather
than operating directly on the SSMs is clear. The advan-

∞ 12 10.5
PSNR (dB)

26 20 16.5 14

Figure 11. The impact of noise on our pipelines when
classifying by digit sequence (regardless of speaker). For

each pipeline, mean average precision is plotted against level
of noise.

∞ 12 10.5
PSNR (dB)

26 20 16.5 14

Figure 12. The impact of noise on our pipelines when
classifying by speaker (ignoring the digit sequence)

tage of fusion before scattering, while less striking, is also
apparent. To probe this further, we ran a second series
of experiments, where simulated noise was added to both
the raw video and raw audio data before pre-processing.
Figure 11 shows the results for digit classification plotted
against the peak signal to noise ratio (pSNR) in dB (∞ is
no noise). Recall that the pSNR of a signal x is defined as
(20 log10 max |x|)/

�
MSE(x). At each level of noise, we

compute a P-R curve, but only the MAP values are shown.
The advantage of fusion before scattering increases in the
presence of noise. Furthermore, downstream SNF yields near
perfect performance at low levels of noise, and continues to
dominate all other pipelines over all noise levels.

Finally, we repeat our noise experiment under different clas-
sification schemes to get an even better idea of what SSMs
retain. Based on our experience with cover song analysis
[22], we originally hypothesized that SSMs would be ap-
proximately invariant to speaker and hence do a particularly
poor job of distinguishing speakers from one another. We
do indeed get poor results when attempting to classify which
of the 51 speakers is uttering a particular digit, as shown in
Figure 12. However, when we drill down even further and
attempt to classify which speaker and which digit sequence is
being uttered, we do surprisingly well, as shown in Figure 13.
The high MAP values there are particularly striking, as there
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Figure 13. The impact of noise on our pipelines when
classifying by speaker and by digit sequence that they

uttered.

are 510 classes between which to disambiguate, and there
are only 3 examples per class; random guessing only has a
MAP of about 0.002. Figure 13 does, however, highlight one
potential pitfall of downstream SNF, which actually degrades
results in all cases. We believe this is because there are so few
examples per class, that the random walk smooths out these
finer details. Hence, we recommend downstream SNF only
when one has access to a rich set of examples, with enough
examples in each class.

9. CONCLUSIONS
This paper discussed three geometric techniques–Self-
Similarity Matrices, Similarity Network Fusion, and the Scat-
tering Transform–and used them together for the first time (to
our knowledge) in the fusion of multi-modal time series. As
described above, self-similarity matrices (SSMs) permit the
comparison of disparate time series on a common footing,
similarity network fusion uses graph-diffusion methods to
produce a single SSM that combines the best features of two
or more modality-specific SSMs, and the scattering transform
extracts multi-scale features from SSMs in a provably robust
way.

We constructed several pipelines, involving both upstream
feature-level and downstream ranking-level fusion, and
demonstrated their benefits on a well-known dataset. The
pipeline performance on digit-string recognition was par-
ticularly striking, especially given the unsupervised nature
of our methodology. The specific tests run in this paper
used pre-processed streams of video and audio data, but the
pipelines are entirely agnostic to choices of modalities and
preprocessing thereof. An important next step is to exploit
these methods in other multi-modal contexts, for example to
seismic-acoustic fusion [3].

The time complexity of our pipeline is not that bad, as
commented on at the end of Sections 5 and 6. However, this
only refers to one possible cost of a fusion pipeline within a
notional sensor network. Assuming a model where there are
individual audio/visual sensors and a fusion center, the SNF
computation must be done by the fusion center, and modality-
specific SSMs must be transmitted to this center from the
local sensors. If transmission is “expensive” (e.g,, there may
be bandwidth limitation imposed by a mission or there may
be detection risks associated with excessive communication),

then sending entire SSMs may not be advisable. Some of our
ongoing research efforts attacks this problem, by exploring
the construction of effective image compression techniques
before transmitting the SSMs.
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