
Cover Song Identification with Timbral Shape Sequences

Christopher J. Tralie
chris.tralie@gmail.com

Paul Bendich
bendich@math.duke.edu

July 17, 2015

Abstract

We introduce a novel low level feature for identifying cover songs which quantifies the relative changes
in the smoothed frequency spectrum of a song. Our key insight is that a sliding window representation
of a chunk of audio can be viewed as a time-ordered point cloud in high dimensions. For corresponding
chunks of audio between different versions of the same song, these point clouds are approximately rotated,
translated, and scaled copies of each other. If we treat MFCC embeddings as point clouds and cast the
problem as a relative shape sequence, we are able to correctly identify 42/80 cover songs in the “Covers
80” dataset. By contrast, all other work to date on cover songs exclusively relies on matching note
sequences from Chroma derived features.

1 Introduction

Automatic cover song identification is a surprisingly difficult classical problem that has long been of interest to
the music information retrieval community [5]. This problem is significantly more challenging than traditional
audio fingerprinting because a combination of tempo changes, musical key transpositions, embellishments in
time and expression, and changes in vocals and instrumentation can all occur simultaneously between the
original version of a song and its cover. Hence, low level features used in this task need to be robust to all
of these phenomena, ruling out raw forms of popular features such as MFCC, CQT, and Chroma.

One prior approach, as reviewed in Section 2, is to compare beat-synchronous sequences of chroma vectors
between candidate covers. The beat-syncing helps this be invariant to tempo, but it is still not invariant to
key. However, many schemes have been proposed to deal with this, up to and including a brute force check
over all key transpositions.

Chroma representations factor out some timbral information by folding together all octaves, which is
sensible given the effect that different instruments and recording environments have on timbre. However,
valuable non-pitch information which is preserved between cover versions, such as spectral fingerprints from
drum patterns, is obscured in Chroma representation. This motivated us to take another look at whether
timbral-based features could be used at all for this problem. Our idea is that even if absolute timbral
information is vastly different between two versions of the same song, the relative evolution of timbre over
time should be comparable.

With careful centering and normalization within small windows to combat differences in global timbral
drift between the two songs, we are indeed able to design shape features which are approximately invariant
to cover. These features, which are based on self-similarity matrices of MFCC coefficients, can be used on
their own to effectively score cover songs. This, in turn, demonstrates that even if absolute pitch is obscured
and blurred, cover song identification is still possible.

Section 2 reviews prior work in cover song identification. Our method is described in detail by Sections 3
and 4. Finally, we report results on the “Covers 80” benchmark dataset [7] in Section 5, and we apply our
algorithm to the recent “Blurred Lines” copyright controversy.

2 Prior Work

To the best of our knowledge, all prior low level feature design for cover song identification has focused
on Chroma-based representations alone. The cover songs problem statement began with the work of [5],

1

which used FFT-based cross-correlation of all key transpositions of beat-synchronous chroma between two
songs. A follow-up work [8] showed that high passing such cross-correlation can lead to better results. In
general, however, cross-correlation is not robust to changes in timing, and it is also a global alignment
technique. Serra [22] extended this initial work by considering dynamic programming local alignment of
chroma sequences, with follow-up work and rigorous parameter testing and an “optimal key transposition
index” estimation presented in [23]. The same authors also showed that a delay embedding of statistics
spanning multiple beats before local alignment improves classification accuracy [25]. In a different approach,
[14] compared modeled covariance statistics of all chroma bins, as well as comparing covariance statistics
for all pairwise differences of beat-level chroma features, which is not unlike the “bag of words” and bigram
representations, respectively, in text analysis. Other work tried to model sequences of chords [2] as a slightly
higher level feature than chroma. Slightly later work concentrated on fusing the results of music separated
into melody and accompaniment [11] and melody, bass line, and harmony [21], showing improvements over
matching chroma on the raw audio. The most recent work on cover song identification has focused on fast
techniques for large scale pitch-based cover song identification, using a sparse set of approximate nearest
neighbors [28] and low dimensional projections [12]. Authors in [9] and [17] also use the magnitude of the
2D Fourier Transform of a sequences of chroma vectors treated as an image, so the resulting coefficients
will be automatically invariant to key and time shifting without any extra computation, at the cost of some
discriminative power.

Outside of cover song identification, there are other works which examine gappy sequences of MFCC in
music, such as [4]. However, these works look at matched sequences of MFCC-like features in their original
feature space. By contrast, in our work, we examine the relative shape of such features. Finally, we are not
the first to consider shape in an applied musical context. For instance, [29] turns sequences of notes in sheet
music into plane curves, whose curvature is then examined. To our knowledge, however, we are the first to
explicitly model shape in musical audio for version identification.

3 Time Ordered Point Clouds from Blocks of Audio

The first step of our algorithm uses a timbre-based method to turn a block of audio into what we call a
time-ordered point cloud. We can then compare to other time-ordered point clouds in a rotation, translation,
and scale invariant manner using normalized Euclidean Self-Similarity matrices (Section 3.3). The goal is to
then match up the relative shape of musical trajectories between cover versions.

3.1 Point Clouds from Blocks and Windows

We start with a song, which is a function of time f(t) that has been discretized as some vector X. In the
following discussion, the symbol X(a, b) means the song portion beginning at time t = a and ending at time
t = b. Given X, there are many ways to summarize a chunk of audio w ∈ X, which we call a window, as
a point in some feature space. We use the classical Mel-Frequency Cepstral coefficient representation [3],
which is based on a perceptually motivated log frequency and log power short-time Fourier transform that
preserves timbral information. In our application, we perform an MFCC with 20 coefficients, giving rise to
a 20-dimensional point.

MFCC(w) ∈ R20 (1)

Given a longer chunk of audio, which we call a block, we can use the above embedding on a collection
of K windows that cover the block to construct a collection of points, or a point cloud, representing that
block. More formally, given a block covering a range [t1, t2], we want a set of window intervals [ai, bi], with
i = 1..K, so that

• ai < bi

• ai < ai+1, bi < bi+1

• ∪Ki=1[ai, bi] = [t1, t2]

2

Where t1, t2, ai, and bi are all discrete time indices into the sampled audio X. Hence, our final operator
takes a set of time-ordered intervals {[a1, b1], [a2, b2], ..., [aK , bK]} which cover a block [t1, t2] and turns them
into a K-dimensional point cloud in R20

PC({[a1, b1], ..., [aK , bK]}) =

{MFCC(X(a1, b1)), ...,MFCC(X(aK , bK))}
(2)

3.2 Beat-Synchronous Blocks

As many others in the MIR community have done, including [5] and [8] for the cover songs application,
we compute our features synchronized within beat intervals. We use a simple dynamic programming beat
tracker developed in [6]. Similarly to [8], we bias the beat tracker with three initial tempo levels: 60BPM,
120BPM, and 180BPM, and we compare the embeddings from all three levels against each other when
comparing two songs, taking the best score out of the 9 combinations. This is to mitigate the tendency of
the beat tracker to double or halve the true beat intervals of different versions of the same song when there
are tempo changes between the two. The trade-off is of course additional computation. We should note that
other cover song works, such as [23], avoid beat tracking step altogether, hence bypassing these problems.
However, it is important for us to align our sequences as well as possible in time so that shape features are
in correspondence, and this is a straightforward way to do so.

Given a set of beat intervals, the union of which makes up the entire song, we take blocks to be all
contiguous groups of B beat intervals. In other words, we create a sequence of overlapping blocks X1, X2, ...
such that Xi is made up of B time-contiguous beat intervals, and Xi and Xi+1 differ only by the starting
beat of Xi and the finishing beat of Xi+1. Hence, given N beat intervals, there are N − B + 1 blocks
total. Note that computing an embedding over more than one beat is similar in spirit to the chroma delay
embedding approach in [25]. Intuitively, examining patterns over a group of beats gives more information
than one beat alone, the effect of which is empirically evaluated in Section 5. For all blocks, we take the
window size W to be the length of the average tempo period, and we advance the window intervals evenly
from the beginning of the block to the end of a block with a hop size H = W/200. Hence, there is a 99.5%
overlap between windows. We were inspired by theory on raw 1D time series signals [18], which shows that
matching the window length to be just under the length of the period in a delay embedding maximizes the
roundness of the embedding. Here we would like to match beat-level periodicities and fluctuations therein,
so it is sensible to choose a window size corresponding to the tempo. This is in contrast to most other
applications that use MFCC sliding window embeddings, which use a much smaller window size on the order
of 10s of milliseconds, generally with a 50% overlap, to ensure that the frequency statistics are stationary in
each window. In our application, however, we have found that a longer window size makes our self similarity
matrices (Section 3.3) smoother, allowing for more reliable matches of beat-level musical trajectories, while
having more windows per beat (high overlap) leads to more robust matching of SSMs using L2 (Section 4.1).

Figure 1 shows the first three principal components of an MFCC embedding with a traditional small
window size versus our longer window embedding to show the smoothing effect.

3.3 Euclidean Self-Similarity Matrices

For each beat-synchronous block Xl spanning B beats, we have a 20-dimensional point cloud extracted from
the sliding window MFCC representation. Given such a time-ordered point cloud, there is a natural way to
create an image which represents the shape of this point cloud in a rotation and translation invariant way,
called the self-similarity matrix (SSM) representation.

Definition 1. A Euclidean Self-Similarity Matrix (SSM) over an ordered point cloud Xl ∈ RM×k is an
M ×M matrix D so that

Dij = ||Xl[i]−Xl[j]||2 (3)

In other words, an SMM is an image representing all pairwise distances between points in a point cloud
ordered by time. SSMs have been used extensively in the MIR community already, spearheaded by the
work of Foote in 2000 for note segmentation in time [10]. They are now often used in general segmentation
tasks [24] [15]. They have also been successfully applied in other communities, such as computer vision to

3

(a) Window size 0.05 seconds (b) Window size 0.5 seconds

Figure 1: A screenshot from our GUI showing PCA on the sliding window representation of an 8-beat block
from the hook of Robert Palmer’s “Addicted To Love” with two different window sizes. Cool colors indicate
windows towards the beginning of the block, and hot colors indicate windows towards the end.

recognize activity classes in videos from different points of view and by different actors [13]. Inspired by this
work, we use self-similarity matrices as isometry invariant descriptors of local shape in our sliding windows
of beat blocks, with the goal of capturing relative shape. In our case, the “activities” are musical expressions
over small intervals, and the “actors” are different performers or groups of instruments.

To help normalize for loudness and other changes in relationships between instruments, we first center
the point cloud within each block on its mean and scale each point to have unit norm before computing the

SSM. That is, we compute the SSM on X̂ l, where

X̂l =

{
x−mean(x)

||x−mean(x)||2
: x ∈ Xl

}
(4)

Also, not every beat block has the same number of samples due to natural variations of tempo in real
songs. Thus, to allow comparisons between all blocks, we resize each SSM to a common image dimension
d× d, which is a parameter chosen in advance, the effects of which are explored empirically in Section 5.

Figure 2 shows examples of SSMs of 4-beat blocks pulled from the Covers80 dataset that our algorithm
matches between two different versions of the same song. Visually, similarities in the matched regions are
evident. In particular, viewing the images as height functions, many of the critical points are close to
each other. The “We Can Work It Out” example shows how this can work even for live performances,
where the overall acoustics are quite different. Even more strikingly, the “Don’t Let It Bring You Down”
example shows how similar shape patterns emerge even with an opposite gender singer and radically different
instrumentation. Of course, in both examples, there are subtle differences due to embellishments, local time
stretching, and imperfect normalization between the different versions, but as we show in Section 5, there
are often enough similarities to match up blocks correctly in practice.

4 Global Comparison of Two Songs

Once all of the beat-synchronous SSMs have been extracted from two songs, we do a global comparison
between all SSMs from two songs to score them as cover matches. Figure 3 shows a block diagram of
our system. After extracting beat-synchronous timbral shape features on SSMs, we then extract a binary
cross-similarity matrix based on the L2 distance between all pairs of self-similarity matrices between two
songs. We subsequently apply the Smith Waterman algorithm on the binary cross-similarity matrix to score
a match between the two songs.

4

The Beatles Five Man Acoustical Jam
Ti
m
e

Ti
m
e

Time Time
(a) A block of 4 beats with 400 windows sliding in the song “We Can Work It Out” by The Beatles with a cover by Five Man
Acoustical Jam

Neil Young Annie Lennox

Ti
m
e

Time Time

Ti
m
e

(b) A block of 4 beats with 400 windows sliding in the song “Don’t Let It Bring You Down” by Neil Young with a cover by Annie
Lennox.

Figure 2: Two examples of MFCC SSM blocks which were matched between a song and its cover in the
covers80 dataset. Hot colors indicate windows in the block are far from each other, and cool colors indicate
that they are close.

5

Song A
Beat

Tracking

Tempo Bias A, B
(60/120/180 bmp)

Beat-Synchronous
MFCC Sliding

Window Blocks

BeatsPerBlock (B)

Self-Similarity
Matrix Computation

Image Resize Dimension d

Binary Cross Similarity
A to B with Mutual
Nearest Neighbors

Fraction of Neighbors Kappa

Smith Waterman
Local Alignment

Song B

A
B

A
B

A

B
Final Score
Matching

A To B

A

B

Figure 3: A block diagram of our system for computing a cover song similarity score of two songs using
timbral features.

4.1 Binary Cross-Similarity And Local Alignment

Given a set of N beat-synchronous block SSMs for a song A and a set of M beat-synchronous block SSMs for
a song B, we compute a song-level matching between song A and B by comparing all pairs of SSMs between
the two songs. For this we create an N ×M cross-similarity matrix (CSM), where

CSMij = ||SSMAi − SSMBj ||2 (5)

is the Frobenius norm (L2 image norm) between the SSM for the ith beat block from song A and the SSM for
jth beat block for song B. Given this cross-similarity information, we then compute a binary cross similarity
matrix BM . A binary matrix is necessary so that we can apply the Smith Waterman local alignment
algorithm [27] to score the match between song A and B, since Smith Waterman only works on a discrete,
quantized alphabet, not real values [23]. To compute BM , we take the mutual fraction κ nearest neighbors
between song A and song B, as in [25]. That is, BM

ij = 1 if CSMij is within the κM th smallest values in row

i of the CSM and if CSMij is within the κN th smallest values in column j of the CSM, and 0 otherwise.
As in [25], we found that a dynamic distance threshold for mutual nearest neighbors per element worked
significantly better than a fixed distance threshold for the entire matrix.

Once we have the BM matrix, we can feed it to the Smith Waterman algorithm, which finds the best
local alignment between the two songs, allowing for time shifting and gaps. Local alignment is a more
appropriate choice than global alignment for the cover songs problem, since it is possible that different
versions of the same song may have intros, outros, or bridge sections that were not present in the original
song, but otherwise there are many sections in common. We choose a version of Smith Waterman with
diagonal constraints, which was shown to work well for aligning binary cross-similarity matrices for chroma
in cover song identification [23]. In particular, we recursively compute a matrix D so that

Dij = max

Di−1,j−1 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−2,j−2, Bi−1,j−1),

Di−2,j−1 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−3,j−2, Bi−1,j−1),

Di−1,j−2 + (2δ(Bi−1,j−1)− 1)+
∆(Bi−2,j−3, Bi−1,j−1),

0

(6)

where δ is the Kronecker delta function and

∆(a, b) =

 0 b = 1
-0.5 b = 0,a = 1
-0.7 b = 0,a = 0

 (7)

The (2δ(Bi−1,j−1)− 1) term in each line is such that there will be a +1 score for a match and a -1 score for
a mismatch. The ∆ function is the so-called “affine gap penalty” which gives a score of −0.5− 0.7(g− 1) for
a gap of length g. The local constraints are to bias Smith Waterman to choosing paths along near-diagonals
of BM . This is important since in musical applications, we do not expect large gaps in time in one song
that are not in the other, which would show up as horizontal or vertical paths through the BM matrix.
Rather, we prefer gaps that occur nearly simultaneously in time for a poorly matched beat or set of beats in

6

(a) Full cross-similarity matrix (CSM) (b) 212× 212 Binary cross-similarity matrix (BM) with κ =
0.05

(c) Smith Waterman with local constraints: Score 93.1

Figure 4: Cross-similarity matrix and Smith Waterman on MFCC-based SSMs for a true cover song pair of
“We Can Work It Out” by The Beatles and Five Man Acoustical Jam.

7

(a) Full cross-similarity matrix (CSM) (b) 212× 185 Binary cross-similarity matrix (BM) with κ =
0.05

(c) Smith Waterman with local constraints: Score 8

Figure 5: Cross-similarity matrix and Smith Waterman on MFCC-based SSMs for two songs that are not
covers of each other: “We Can Work It Out” by The Beatles and “Yesterday” by En Vogue.

i, j

i-1,
j-1

i-1,
j-2

i-2,
j-1

i-2,
j-2

i-3,
j-2

i-2,
j-3

Figure 6: Constrained local matching paths considered in Smith Waterman, as prescribed by [23].

8

an otherwise well-matching section. Figure 6 shows a visual representation of the paths considered through
BM .

Figure 4 shows an example of a CSM, BM , and resulting Smith Waterman for a true cover song pair.
Several long diagonals are visible, indicating large chunks of the two songs are in correspondence, and this
gives rise to a large score of 93.1 between the two songs. Figure 5 shows the CSM, B, and Smith Waterman
for two songs which are not versions of each other. By contrast, there are no long diagonals, and this pair
only receives a score of 8.

5 Results

5.1 Covers 80

To benchmark our algorithm, we apply it to the standard “Covers 80” dataset [7], which consists of 80
sets of two versions of the same song, most of which are pop songs from the past three decades. There
are designated two sets of songs A and B, each with exactly one version of every pair. To benchmark our
algorithm on this dataset, we follow the scheme in [5] and [8]. That is, given a song from set A, compute the
Smith Waterman score from all songs from set B and declare the cover song to be the one with the maximum
score. Note that a random classifier would only get 1/80 in this scheme. The best scores reported on this
dataset are 72/80 [20], using a support vector machine on several different chroma-derived features.

Table 1 shows the correctly identified songs based on the maximum score, given variations of the parame-
ters we have in our algorithm. We achieve a maximum score of 42/80 for a variety of parameter combinations.
The nearest neighbor fraction κ and the dimension of the SSM image have very little effect, but increasing the
number of beats per block has a positive effect on the performance. The stability of κ and d are encouraging
from a robustness standpoint, and the positive effect increasing the number of beats per block suggests that
the shape of medium scale musical expressions are more discriminative than smaller ones.

Table 1: The number of songs that are correctly ranked as the most similar in the Covers 80 dataset, varying
paramters. κ is the nearest neighbor fraction, B is the number of beats per block, and d is the resized
dimension of the Euclidean Self-Similarity images.

Kappa = 0.05 B = 8 B = 10 B = 12 B = 14
d = 100 30 33 36 40
d = 200 31 33 36 39
d = 300 31 34 36 40
Kappa = 0.1 B = 8 B = 10 B = 12 B = 14
d = 100 35 39 41 42
d = 200 36 38 42 42
d = 300 36 38 41 41
Kappa = 0.15 B = 8 B = 10 B = 12 B = 14
d = 100 36 42 41 42
d = 200 36 41 41 42
d = 300 38 42 42 41

In addition to the Covers 80 benchmark, we apply our cover songs score to a recent popular music
controversy, the “Blurred Lines” controversy [16]. Marvin Gaye’s estate argues that Robin Thicke’s recent
pop song “Blurred Lines” is a copyright infringement of Gaye’s “Got To Give It Up.” Though the note
sequences differ between the two songs, ruling out any chance of a high chroma-based score, Robin Thicke has
said that his song was meant to “evoke an era” (Marvin Gaye’s era) and that he derived significant inspiration
from “Got To Give It Up” specifically [16]. Without making a statement about any legal implications, we
note that our timbral shape-based score between “Blurred Lines” and “Got To Give It Up” is in the 99.9th

percentile of all scores between songs in group A and group B in the Covers 80 dataset, for κ = 0.1, B = 14,
and d = 200. Unsurprisingly, when comparing “Blurred Lines” with all other songs in the Covers 80 database
plus “Got To Give It Up,” “Got To Give It Up” was the highest ranked. For reference, binary cross similarity
matrices are shown in Figure 7, both for our timbre shape based technique and the delay embedding chroma

9

(a) Shape-based timbre (b) Chroma delay embedding

Figure 7: Corresponding portions of the binary cross-similarity matrix between Marvin Gaye’s “Got To Give
It Up” and Robin Thicke’s “Blurred Lines” for both shape-based timbre (our technique) and chroma delay
embedding

technique in [25]. The timbre-based cross-similarity matrix is densely populated with diagonals, while the
pitch-based one is not.

6 Conclusions And Future Work

We show that timbral information in the form of MFCC can indeed be used for cover song identification.
Most prior approaches have used Chroma-based features averaged over intervals. By contrast, we show
that an analysis of the fine relative shape of MFCC features over intervals is another way to achieve good
performance. This opens up the possibility for MFCC to be used in much more flexible music information
retrieval scenarios than traditional audio fingerprinting.

On the more technical side, we should note that for comparing shape, L2 of SSMs for cross-similarity is
fairly simple and not robust to local re-parameterizations in time between versions, though we tried many
other isometry invariant shape descriptors that were significantly slower and yielded inferior performance in
initial implementation. In particular, we tried curvature descriptors (ratio of arc length to chord length),
Gromov-Hausdorff distance after fractional iterative closest points aligning MFCC block curves [19], and
Earth Mover’s distance between SSMs [26]. If we are able to find another shape descriptor which performs
better than our current scheme but is slower, we may still be able to make it computationally feasible by using
the “Generalized Patch Match” algorithm [1] to reduce the number of pairwise block comparisons needed by
exploiting coherence in time. This is similar in spirit to the approximate nearest neighbors schemes proposed
in [28] for large scale cover song identification, and we could adapt their sparse Smith Waterman algorithm
to our problem. In an initial implementation of generalized patch match for our current scheme, we found
we only needed to query about 15% of the block pairs.

7 Supplementary Material

We have documented our code and uploaded directions for performing all experiments run in this paper. We
also created an open source graphical user interface which can be used to interactively view cross-similarity
matrices and to examine the shape of blocks of audio after 3D PCA using OpenGL. All code can be found
in the ISMIR2015 directory at

github.com/ctralie/PublicationsCode.

10

8 Acknowledgements

Chris Tralie was supported under NSF-DMS 1045133 and an NSF Graduate Fellowship. Paul Bendich was
supported by NSF 144749. John Harer and Guillermo Sapiro are thanked for valuable feedback. The authors
would also like to thank the Information Initative at Duke (iiD) for stimulating this collaboration.

References

[1] Connelly Barnes, Eli Shechtman, Dan B Goldman, and Adam Finkelstein. The generalized patchmatch
correspondence algorithm. In Computer Vision–ECCV 2010, pages 29–43. Springer, 2010.

[2] Juan Pablo Bello. Audio-based cover song retrieval using approximate chord sequences: Testing shifts,
gaps, swaps and beats. In ISMIR, volume 7, pages 239–244, 2007.

[3] Bruce P Bogert, Michael JR Healy, and John W Tukey. The quefrency alanysis of time series for echoes:
Cepstrum, pseudo-autocovariance, cross-cepstrum and saphe cracking. In Proceedings of the symposium
on time series analysis, volume 15, pages 209–243. chapter, 1963.

[4] Michael Casey and Malcolm Slaney. The importance of sequences in musical similarity. In Acoustics,
Speech and Signal Processing, 2006. ICASSP 2006 Proceedings. 2006 IEEE International Conference
on, volume 5, pages V–V. IEEE, 2006.

[5] Daniel PW Ellis. Identifying’cover songs’ with beat-synchronous chroma features. MIREX 2006, pages
1–4, 2006.

[6] Daniel PW Ellis. Beat tracking by dynamic programming. Journal of New Music Research, 36(1):51–60,
2007.

[7] Daniel PW Ellis. The “covers80” cover song data set. URL: http://labrosa. ee. columbia.
edu/projects/coversongs/covers80, 2007.

[8] Daniel PW Ellis and Courtenay Valentine Cotton. The 2007 labrosa cover song detection system.
MIREX 2007, 2007.

[9] Daniel PW Ellis and Bertin-Mahieux Thierry. Large-scale cover song recognition using the 2d fourier
transform magnitude. In The 13th international society for music information retrieval conference,
pages 241–246, 2012.

[10] Jonathan Foote. Automatic audio segmentation using a measure of audio novelty. In Multimedia and
Expo, 2000. ICME 2000. 2000 IEEE International Conference on, volume 1, pages 452–455. IEEE,
2000.

[11] Rémi Foucard, J-L Durrieu, Mathieu Lagrange, and Gaël Richard. Multimodal similarity between
musical streams for cover version detection. In Acoustics Speech and Signal Processing (ICASSP), 2010
IEEE International Conference on, pages 5514–5517. IEEE, 2010.

[12] Eric J Humphrey, Oriol Nieto, and Juan Pablo Bello. Data driven and discriminative projections for
large-scale cover song identification. In ISMIR, pages 149–154, 2013.

[13] Imran N Junejo, Emilie Dexter, Ivan Laptev, and Patrick Pérez. Cross-view action recognition from
temporal self-similarities. In Proceedings of the 10th European Conference on Computer Vision: Part
II, pages 293–306. Springer-Verlag, 2008.

[14] Samuel Kim, Erdem Unal, and Shrikanth Narayanan. Music fingerprint extraction for classical music
cover song identification. In Multimedia and Expo, 2008 IEEE International Conference on, pages
1261–1264. IEEE, 2008.

[15] Brian McFee and Daniel PW Ellis. Analyzing song structure with spectral clustering. In 15th Interna-
tional Society for Music Information Retrieval (ISMIR) Conference, 2014.

11

[16] Emily Miao and Nicole E Grimm. The blurred lines of what constitutes copyright infringement of music:
Robin thicke v. marvin gayes estate. WESTLAW J. INTELLECTUAL PROP., 20:1, 2013.

[17] Oriol Nieto and Juan Pablo Bello. Music segment similarity using 2d-fourier magnitude coefficients.
In Acoustics, Speech and Signal Processing (ICASSP), 2014 IEEE International Conference on, pages
664–668. IEEE, 2014.

[18] Jose A Perea and John Harer. Sliding windows and persistence: An application of topological methods
to signal analysis. Foundations of Computational Mathematics, pages 1–40, 2013.

[19] Jeff M Phillips, Ran Liu, and Carlo Tomasi. Outlier robust icp for minimizing fractional rmsd. In
3-D Digital Imaging and Modeling, 2007. 3DIM’07. Sixth International Conference on, pages 427–434.
IEEE, 2007.

[20] Suman Ravuri and Daniel PW Ellis. Cover song detection: from high scores to general classification.
In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on, pages
65–68. IEEE, 2010.

[21] Justin Salamon, Joan Serrà, and Emilia Gómez. Melody, bass line, and harmony representations for
music version identification. In Proceedings of the 21st international conference companion on World
Wide Web, pages 887–894. ACM, 2012.

[22] J Serra. Music similarity based on sequences of descriptors: tonal features applied to audio cover song
identification. Department of Information and Communication Technologies, Universitat Pompeu Fabra,
Barcelona, Spain, 2007.

[23] Joan Serra, Emilia Gómez, Perfecto Herrera, and Xavier Serra. Chroma binary similarity and local align-
ment applied to cover song identification. Audio, Speech, and Language Processing, IEEE Transactions
on, 16(6):1138–1151, 2008.

[24] Joan Serra, Meinard Müller, Peter Grosche, and Josep Lluis Arcos. Unsupervised detection of music
boundaries by time series structure features. In Twenty-Sixth AAAI Conference on Artificial Intelli-
gence, 2012.

[25] Joan Serra, Xavier Serra, and Ralph G Andrzejak. Cross recurrence quantification for cover song
identification. New Journal of Physics, 11(9):093017, 2009.

[26] Sameer Shirdhonkar and David W Jacobs. Approximate earth movers distance in linear time. In
Computer Vision and Pattern Recognition, 2008. CVPR 2008. IEEE Conference on, pages 1–8. IEEE,
2008.

[27] Temple F Smith and Michael S Waterman. Identification of common molecular subsequences. Journal
of molecular biology, 147(1):195–197, 1981.

[28] Romain Tavenard, Hervé Jégou, and Mathieu Lagrange. Efficient cover song identification using ap-
proximate nearest neighbors. 2012.

[29] Julián Urbano, Juan Lloréns, Jorge Morato, and Sonia Sánchez-Cuadrado. Melodic similarity through
shape similarity. In Exploring music contents, pages 338–355. Springer, 2011.

12

