
TEMPLATE DESIGN © 2008

www.PosterPresentations.com

Purpose

The purpose of this project is to explore classification of 3D point cloud blobs

extracted from a scan of a city into different object categories. We start with an enormous

data set: a 3D scan of the city of Ottawa, merged from laser scans of the city. Work has

been done already to segment this enormous point cloud into smaller objects of interest,

the “blobs,” which are denser collections of points separated from the background that

likely make up one continuous object (e.g. a fire hydrant, a car, or a mailbox). Some work

has also been done classifying these objects using results from the segmentation in

addition to some 3D shape descriptors.

My main work this semester expands the classification techniques of these

segmented blobs by adding a novel 3D shape descriptor and analyzing the extent to

which it improves classification. The main challenge of this research comes from

incomplete, unstructured object scans due to high noise (from the scanner and improper

segmentation) and occlusion (due to the limited viewpoint of the scanner). The new

descriptor, which tries to align these point cloud scans to known models of city objects in

a database, is designed to be resistant to noise and especially to occlusion.

Feature Vector from the Mesh Database

3DOF vs 6DOF Alignment

At each step of ICP some optimal transformation is calculated to bring the

points closer to the mesh. Initially, we optimized with a 6D affine

transformation: 3 degrees of freedom for (x, y, z) translation and 3 degrees of

freedom for any rotational orientation. But a more physically sensible choice

may be to only to allow xy translation on the ground (to prevent objects from

being “lifted”) and rotation about the z-axis, with 3 degrees of freedom total.

Both of these techniques are tested and compared to each other, with the

hypothesis that 3D will outperform 6D since it makes more physical sense

Batch Testing and Machine Learning with Weka

To test the accuracy of this new feature, I started with 1163 object scan

segmentations from the city as training data. These objects had all been

classified by hand ahead of time so I knew the type. I then computed the

42-D feature vector by matching each scan up with the objects in the

database and computing the ratio of the points that fell within some

distance eps of the mesh after alignment. I did this for all 1163 objects

first using 6DOF alignment and then using 3DOF alignment. I also varied

the cutoff distance distance eps between 0.05m, 0.1m, 0.2m, 0.4m, and

0.8m. The idea here was that a smaller eps gives lower scores because

alignments have to be more exact for the points to be that close, but it

may be too harsh (so there’s some trade-off that I wanted to assess).

Results / Conclusions

Common Confusions

References

[1] Boyko, Aleksey. "Lidar City Project instructions." Computer Science Department at

Princeton University. Web. 26 Feb. 2010.

<http://www.cs.princeton.edu/~aboyko/city_doc/mainInstructions/>.

[2] Funkhouser, Thomas, Aleksey Govolinsky, and Vladimir G. Kim. "Shape-based Recognition

of 3D Point Clouds in Urban Environments." Print.

[3] Funkhouser, Thomas, and Aleksey Golovinsky. "Min-Cut Based Segmentation of Point

Clouds." Print.

[4] Funkhouser, Thomas, Patrick Min, Michael Kazhdan, Joyce Chen, Alex Halderman, David

Dobkin, and David Jacobs. "A Search Engine for 3D Models." Print.

[5] Yaroslav Halchenko, Yaroslav. "Iterative Closest Point (ICP) Algorithm. L1 solution. . ."

Web.

There are 42 hand-modeled triangular meshes of likely city objects. A 3D scan is aligned

to each of these 42 models and 42-D feature vector is computed, where each component

is the fraction of points that fall within a certain distance eps of the 3D object from the

mesh. This ensures that partial scans of a model still get a good score with that model

Classification of 3D Object Scans in Urban Environments

Christopher Tralie. ctralie@princeton.edu

Class of 2011 Electrical Engineering, Princeton University

Thomas A. Funkhouser funk@cs.princeton.edu

Professor of Computer Science, Princeton University

Typical Point Cloud “Blob” Scans

A = 1_advertising_cylinder

C = 12_dumpster

D = 14_fire_hydrant

E = 15_flagpole

F = 24_mailing_box(free_standing)

G = 26_newspaper_box

H = 29_parking_meter

I = 33_recycle_bins

J = 43_trashcan

K = 75_highway_sign

L = 97_telephone_booth

M = 133_traffic_control_box

N = 134_traffic_control_unit

O = 138_lamp_post_one_bulb

P = 140_lamp_post_three_bulbs

Q = 141_lamp_post_four_bulbs

R = 142_lamp_post_five_balls

S = 143_lamp_post_three_and_two_balls

T = 144_lamp_post_tall

U = 145_lamp_post_on_light_standard

W = 150_stop_sign

X = 152_street_name_sign

Y = 153_other_traffic_sign

Z = 154_tall_thin_sign_on_pole

AA = 157_a_frame_sign_on_ground

AB = 161_traffic_light_no_arm

AC = 162_traffic_light_half_arm

AD = 163_traffic_light_one_arm

AE = 164_traffic_light_mult_arm

AF = 165_traffic_light_on_light_standard

AG = 172_short_post_in_row

AH = 175_tall_post_in_fence

AI = 181_light_standard_no_arm

AJ = 182_light_standard_mid_arm

AK = 184_light_staandard_T_with_sign

AL =

185_light_standard_no_arm_with_sign

AM =

186_light_standard_top_arm_with_sign

AN =

187_light_standard_mid_arm_with_flag

AO = 191_car_sedan

AP = 192_car_van

AQ = 193_car_pickup

AR = 194_car_truck

Alignment Using Iterative Closest Points (ICP)

Car (bottom missing)

Stop Sign

(noise/segmentation)

Telephone booth

(incomplete scan)

Iterative Closest Points (ICP) is a known technique to bring different objects close

to each other using some distance metric. In this case, a point cloud is aligned to

a mesh model using Euclidean distance, where distance is calculated between

each point and the closest point on the mesh (accelerated with a spatially

partitioned mesh search tree). At each step, an optimal transformation is

calculated to bring the point cloud as close as possible to the mesh with this

overall distance metric between all of the points. Then another optimal

transformation can be calculated, and this process is repeated until convergence.

In this manner, the point cloud “snaps” into place at some local minimum of

Euclidean distance (like many iterative techniques, it isn’t guaranteed to have a

global min). Note also that good initial alignments with Principal Component

Analysis techniques (using SVD) can help the convergence

Car to flagpole

6D

3D

Acknowledgements

•Tom Funkhouser: Faculty adviser, provided codebase, algorithm

ideas/advice, and extreme debugging help

•Aleksey Boyko: Graduate student in computer science, started city

project and advised me on many technical points along the way

Highway sign to highway sign

6D
3D

This example shows the potential benefits of

using 3D over 6D. The car is nothing like the

flagpole, but the 6D alignment rotates the car

into a physically impossible position

suspended in the air facing down where it

matches the flagpole rather well. The 3D

alignment, on the other hand, preserves the

car at ground level where few points are close

to the flagpole

This example shows the potential dangers of

using 3D over 6D. The highway sings are bent

slightly different ways. The 6D is able to fix

this, but the 3D cannot, so it gets a low score

even though it is itself a highway sign

Once all of the feature vectors were computed varying the different

parameters, an open source machine learning program called “Weka”

was used to test the effectiveness of the classifiers. I chose to classify

the objects using a J48 decision tree built off of the training data. 10

“folds” were used, which means that the 10 sections of 10% of the training

data were taken out and tested against the remaining 90%. Here are a

few screenshots of Weka in action.

Weka showing the histogram of one of the distance features, which is on the interval [0, 1] since it is the

ratio of points that fell within a certain distance epsilon of the model associated with that feature

Weka showing a confusion matrix of my classifier in one of the tests. A confusion matrix has the known

object type in the rows, and the guesses of other class types in the columns. Entries along the diagonal

are correct guesses. Entries off the diagonal are mistakes.

64

66

68

70

72

74

76

78

80

0.05 0.1 0.2 0.4 0.8

% Correct

Epsilon (Distance cutoff)

Classification Results

6D

3D

Classification was overall successful for both 6D and 3D alignment. Optimal

epsilon for 3D was about 0.1, while the optimal epsilon for 6D was 0.05. These

small epsilon values likely outperformed the larger ones because they were more

discriminative.

Surprisingly, 6D outperformed 3D overall, perhaps because of this particular data

set. More analysis will be done before the final writeup as to why that is the case

Most of the confusions make sense and are of very similar objects

geometrically and scale-wise. For instance:

Lamp posts with different numbers of bulbs

were often confused with each other

Fire hydrants, “short posts,” and mailboxes were

confused with each other, presumably because the

scans were not of fine enough resolution to pick

out the more subtle details (and these objects are

all of similar size)

mailto:ctralie@princeton.edu
mailto:ctralie@princeton.edu

