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The purpose of this project is to explore classification of 3D point cloud blobs lterative Closest Points (ICP) is a known technique to bring different objects close | | | Classification Results
extracted from a scan of a city into different object categories. We start with an enormous to each other using some distance metric. In this case, a point cloud is aligned to To test the accuracy of this new feature, | started with 1163 object scan 78
data set: a 3D scan of the city of Ottawa, merged from laser scans of the city. Work has ,g , , ' , s segmentations from the city as training data. These objects had all been 76
been done already to segment this enormous point cloud into smaller objects of interest a mesh model using Euclidean distance, where distance is calculated between ' T~
i . . ’ - - - - lassified by hand ahead of time so | knew the type. | then computed the &
the “blobs,” which are denser collections of points separated from the background that each point and the closest point on the mesh (accelerated with a spatially ¢ | | Rt ~ T~
likely make up one continuous object (.g. a fire hydrant, a car, or a mailbox). Some work partitioned mesh search tree). At each step, an optimal transformation is 42-D feature vector by matching each scan up with the objects in the e = 0
has also been done classifying these objects using results from the segmentation in calculated to bring the point cloud as close as possible to the mesh with this database and computing the ratio of the points that fell within some i — D
addition to some 3D shape descriptors. . | overall distance metric between all of the points. Then another optimal distance eps of the mesh after alignment. | did this for all 1163 objects o
My main work Fh|s semester expands the glassmcatlon techmques of these t f " b culated. and h , od unti first using 6DOF alignment and then using 3DOF alignment. | also varied N
segmented blobs by adding a novel 3D shape descriptor and analyzing the extent to ranstormation can be caiculated, and this process IS repeated Untit Convergence. . | '
which it improves classification. The main challenge of this research comes from In this manner, the point cloud “snaps” into place at some local minimum of the cutoff distance distance eps between 0.05m, 0.1m, 0.2m, 0.4m, and S » ” - ”
incomplete, unstructured object scans due to high noise (from the scanner and improper Euclidean distance (like many iterative techniques, it isn’t guaranteed to have a 0.8m. The idea here was that a smaller eps gives lower scores because Epsilon (Distance cutof)
Zegm?r:tat'o?]), ah”f,occt'us'l‘?” (f'h“e to the :'Qgﬁg Zfaﬁzclﬁmﬁ rSnC:(;‘e”lzr())'f ;theorg)?:::ts . global min). Note also that good initial alignments with Principal Component alignments have to be more exact for the points to be that close, but it Classification was overall successful for both 6D and 3D alignment. Optimal
escriptor, which tries to align these poin . . . , :
3 datart))ase, is designed to Ee reSiStaFr)]’[ to noise and especially to occlusion. yoo Analysis techniques (using SVD) can help the convergence may be too harsh (so there’s some trade-off that | wanted to assess). epsilon for 3D was about 0.1, while the optimal epsilon for 6D was 0.05. These
_ _ 3DOF vs 6DOF Alignment | | small epsilon values likely outperformed the larger ones because they were more
Typical Point Cloud “Blob” Scans Once all of the feature vectors were computed varying the different discriminative.
e e At each step of ICP some optimal transformation is calculated to bring the parameters, an open source machine learning program called “Weka” Surprisingly, 6D outperformed 3D overalll, pgrhapsl because of this partlicular data
i . | points closer to the mesh. Initially, we optimized with a 6D affine was used to test the effectiveness of the classifiers. | chose to classify set. More analysis will be done before the final writeup as to why that is the case
transformation: 3 degrees of freedom for (x, y, z) translation and 3 degrees of the objects using a J48 decision tree built off of the training data. 10
freedom for any rotational orientation. But a more physically sensible choice “folds” were used, which means that the 10 sections of 10% of the training Common Confusions
e | may be to only to allow xy translation on the ground (to prevent objects from : " 0 _ . .
R yos oo Y 1169 fop : data were taken out and tested against the remaining 90%. Here are a Most of the confusions make sense and are of very similar objects
being “lifted”) and rotation about the z-axis, with 3 degrees of freedom total. faw screenshots of Weka in action . . .
Car (bottom missing) b - - - geometrically and scale-wise. For instance:
U 5 Both of these techniques are tested and compared to each other, with the
~ Stop:Sign Telephane booth hypothesis that 3D will outperform 6D since it makes more physical sense o _— =
(noise/segmentation) (incompletescan) | | T T T o [ [nmme ot vt G{' *,'ﬁ-‘t,"
3DOF |;F|:penﬁ|e... || oOpenuRL.. |[ oOpenDB.. |[ Generate.. Undo Edt.. |[ save. |
Feature Vector from the Mesh Database 6DOF —_— -
There are 42 hand-modeled triangular meshes of likely city objects. A 3D scan is aligned fa o fs % o 0 & = o — !
to each of these 42 models and 42-D feature vector is computed, where each component b e 0t L: ICEoeET e - |
is the fraction of points that fall within a certain distance eps of the 3D object from the 1 T2 s by ;E;;;:;;;;;;;_ _J ’ Fire hydrants, “short posts,” and mailboxes were
mesh. This ensures that partial scans of a model still get a good score with that model 1 Mo s 1 o 0 1 0 - o Lamp posts with different numbers of bulbs confused with each other, presumably because the
O 0 o0 1 T — were often confused with each other scans were not of fine enough resolution to pick
O 0O o0 1 X out the more subtle details (and these objects are
all of similar size)
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This exarnple shows the potentalbenefis o | Web
using 3D over 6D. The car is nothing like the ~ This example shows the potential dangers of Acknowledgements
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